論文の概要: Cross-Modal Multi-Tasking for Speech-to-Text Translation via Hard
Parameter Sharing
- arxiv url: http://arxiv.org/abs/2309.15826v1
- Date: Wed, 27 Sep 2023 17:48:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 12:21:44.044285
- Title: Cross-Modal Multi-Tasking for Speech-to-Text Translation via Hard
Parameter Sharing
- Title(参考訳): ハードパラメータ共有による音声・テキスト翻訳のためのクロスモーダルマルチタスク
- Authors: Brian Yan, Xuankai Chang, Antonios Anastasopoulos, Yuya Fujita, Shinji
Watanabe
- Abstract要約: ハードパラメータ共有を伴うST/MTマルチタスクフレームワークを提案する。
本手法は,事前処理による音声文のモダリティギャップを低減する。
我々は,注意エンコーダ・デコーダ,コネクショニスト時間分類(CTC),トランスデューサ,共同CTC/アテンションモデルを平均+0.5BLEUで改善することを示す。
- 参考スコア(独自算出の注目度): 72.56219471145232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works in end-to-end speech-to-text translation (ST) have proposed
multi-tasking methods with soft parameter sharing which leverage machine
translation (MT) data via secondary encoders that map text inputs to an
eventual cross-modal representation. In this work, we instead propose a ST/MT
multi-tasking framework with hard parameter sharing in which all model
parameters are shared cross-modally. Our method reduces the speech-text
modality gap via a pre-processing stage which converts speech and text inputs
into two discrete token sequences of similar length -- this allows models to
indiscriminately process both modalities simply using a joint vocabulary. With
experiments on MuST-C, we demonstrate that our multi-tasking framework improves
attentional encoder-decoder, Connectionist Temporal Classification (CTC),
transducer, and joint CTC/attention models by an average of +0.5 BLEU without
any external MT data. Further, we show that this framework incorporates
external MT data, yielding +0.8 BLEU, and also improves transfer learning from
pre-trained textual models, yielding +1.8 BLEU.
- Abstract(参考訳): 近年のエンドツーエンドの音声テキスト翻訳(ST)では,テキスト入力を結果のクロスモーダル表現にマッピングするセカンダリエンコーダを介して機械翻訳(MT)データを活用するソフトパラメータ共有を用いたマルチタスク方式が提案されている。
そこで本研究では,すべてのモデルパラメータをクロスモーダルに共有するハードパラメータ共有型st/mtマルチタスクフレームワークを提案する。
提案手法は,音声とテキストの入力を類似長さの2つの離散トークンシーケンスに変換する前処理段階を通じて,音声とテキストのモダリティギャップを低減する。
MuST-Cの実験により、我々のマルチタスクフレームワークは、外部MTデータなしで平均+0.5BLEUで、注意エンコーダデコーダ、コネクショニスト時間分類(CTC)、トランスデューサ、共同CTC/アテンションモデルを改善することを示した。
さらに、このフレームワークは外部のmtデータを組み込んで+0.8 bleuを与え、事前学習されたテキストモデルからの転送学習を改善し、+1.8 bleuを得る。
関連論文リスト
- Towards Zero-Shot Multimodal Machine Translation [64.9141931372384]
本稿では,マルチモーダル機械翻訳システムの学習において,完全教師付きデータの必要性を回避する手法を提案する。
我々の手法はZeroMMTと呼ばれ、2つの目的の混合で学習することで、強いテキストのみの機械翻訳(MT)モデルを適応させることである。
本手法が完全に教師付きトレーニングデータを持たない言語に一般化されることを証明するため,CoMMuTE評価データセットをアラビア語,ロシア語,中国語の3言語に拡張した。
論文 参考訳(メタデータ) (2024-07-18T15:20:31Z) - TMT: Tri-Modal Translation between Speech, Image, and Text by Processing
Different Modalities as Different Languages [96.8603701943286]
Tri-Modal Translation (TMT) モデルは、音声、画像、テキストにまたがる任意のモダリティを翻訳する。
音声と画像データを個別のトークンにトークン化し、モダリティをまたいだ統一インターフェースを提供する。
TMTは単一モデルの性能を一貫して上回っている。
論文 参考訳(メタデータ) (2024-02-25T07:46:57Z) - Pushing the Limits of Zero-shot End-to-End Speech Translation [15.725310520335785]
データ不足とテキストモダリティ間のモダリティギャップは、エンドツーエンド音声翻訳(ST)システムの2つの大きな障害である。
ゼロショットSTの手法であるZeroSwotを導入し、ペアSTデータを使わずにモダリティギャップをブリッジする。
実験の結果,STデータを使わずにモダリティギャップを効果的に塞ぐことが可能であること,MuST-CとCoVoSTで得られた結果が本手法の優位性を示している。
論文 参考訳(メタデータ) (2024-02-16T03:06:37Z) - MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer [106.79844459065828]
本稿では,画像テキストデータのエンドツーエンド生成モデルであるMM-Interleavedを提案する。
マルチスケールおよびマルチイメージ機能同期モジュールを導入し、以前のコンテキストできめ細かい画像機能に直接アクセスできるようにする。
MM-Interleavedはマルチモーダルな指示に従って視覚的詳細を認識し、テキストと視覚の両方の条件に従って一貫した画像を生成する。
論文 参考訳(メタデータ) (2024-01-18T18:50:16Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
クリックスルーレート(CTR)予測は、パーソナライズされたオンラインサービスにおいてコア機能モジュールとして機能する。
CTR予測のための従来のIDベースのモデルは、表形式の1ホットエンコードされたID特徴を入力として取る。
事前訓練された言語モデル(PLM)は、テキストのモダリティの文を入力として取る別のパラダイムを生み出した。
本稿では,CTR予測のためのIDベースモデルと事前学習言語モデル(FLIP)間の細粒度特徴レベルのアライメントを提案する。
論文 参考訳(メタデータ) (2023-10-30T11:25:03Z) - Incorporating Probing Signals into Multimodal Machine Translation via
Visual Question-Answering Pairs [45.41083125321069]
マルチモーダル機械翻訳(MMT)システムは、テキスト入力が完了すると視覚情報に対する感度が低下する。
ソーステキストからVQAスタイルのペアを並列に生成する手法が提案されている。
MMT-VQAマルチタスク学習フレームワークを導入し、データセットからの明示的な探索信号をMTトレーニングプロセスに組み込む。
論文 参考訳(メタデータ) (2023-10-26T04:13:49Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
業界で広く使われているストリーミングモデルTransformer-Transducer(T-T)の性能向上のためのテキスト生成とインジェクションについて検討する。
まず、コードスイッチングテキストデータを生成し、テキスト-to-Speech(TTS)変換または暗黙的に音声とテキストの潜在空間を結び付けることによって、T-Tモデルに生成されたテキストを明示的に注入する戦略を提案する。
実際のマンダリン・イングリッシュ音声の1,800時間を含むデータセットを用いて訓練したT-Tモデルの実験結果から,生成したコードスイッチングテキストを注入する手法により,T-Tモデルの性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2023-03-20T09:13:27Z) - Tight Integrated End-to-End Training for Cascaded Speech Translation [40.76367623739673]
カスケード音声翻訳モデルは、離散的および非微分可能転写に依存している。
直接音声翻訳は、誤りの伝播を避けるための代替手法である。
この研究は、カスケードコンポーネント全体を1つのエンドツーエンドのトレーニング可能なモデルにまとめることの可能性を探る。
論文 参考訳(メタデータ) (2020-11-24T15:43:49Z) - ST-BERT: Cross-modal Language Model Pre-training For End-to-end Spoken
Language Understanding [23.367329217151084]
エンドツーエンドの音声言語理解タスクに対処するために,Speech-Text BERT (ST-BERT) と呼ばれる,モーダルな事前学習言語モデルを導入する。
ST-BERTは、音素の後方テキストとサブワードレベルのテキストを入力として、文脈化されたクロスモーダルアライメントを学習する。
提案手法は,ドメイン固有音声テキストペアデータを用いたドメイン適応型事前学習により,さらなるSLU性能向上を示す。
論文 参考訳(メタデータ) (2020-10-23T10:28:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。