Targeted Image Data Augmentation Increases Basic Skills Captioning
Robustness
- URL: http://arxiv.org/abs/2309.15991v2
- Date: Fri, 17 Nov 2023 15:47:35 GMT
- Title: Targeted Image Data Augmentation Increases Basic Skills Captioning
Robustness
- Authors: Valentin Barriere, Felipe del Rio, Andres Carvallo De Ferari, Carlos
Aspillaga, Eugenio Herrera-Berg, Cristian Buc Calderon
- Abstract summary: TIDA (Targeted Image-editing Data Augmentation) is a targeted data augmentation method focused on improving models' human-like abilities.
We show that a TIDA-enhanced dataset related to gender, color, and counting abilities induces better performance in several image captioning metrics.
- Score: 0.932065750652415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks typically struggle in generalizing to
out-of-context examples. One reason for this limitation is caused by having
datasets that incorporate only partial information regarding the potential
correlational structure of the world. In this work, we propose TIDA (Targeted
Image-editing Data Augmentation), a targeted data augmentation method focused
on improving models' human-like abilities (e.g., gender recognition) by filling
the correlational structure gap using a text-to-image generative model. More
specifically, TIDA identifies specific skills in captions describing images
(e.g., the presence of a specific gender in the image), changes the caption
(e.g., "woman" to "man"), and then uses a text-to-image model to edit the image
in order to match the novel caption (e.g., uniquely changing a woman to a man
while maintaining the context identical). Based on the Flickr30K benchmark, we
show that, compared with the original data set, a TIDA-enhanced dataset related
to gender, color, and counting abilities induces better performance in several
image captioning metrics. Furthermore, on top of relying on the classical BLEU
metric, we conduct a fine-grained analysis of the improvements of our models
against the baseline in different ways. We compared text-to-image generative
models and found different behaviors of the image captioning models in terms of
encoding visual encoding and textual decoding.
Related papers
- ARMADA: Attribute-Based Multimodal Data Augmentation [93.05614922383822]
Attribute-based Multimodal Data Augmentation (ARMADA) is a novel multimodal data augmentation method via knowledge-guided manipulation of visual attributes.
ARMADA is a novel multimodal data generation framework that: (i) extracts knowledge-grounded attributes from symbolic KBs for semantically consistent yet distinctive image-text pair generation.
This also highlights the need to leverage external knowledge proxies for enhanced interpretability and real-world grounding.
arXiv Detail & Related papers (2024-08-19T15:27:25Z) - Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process.
Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities.
We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions.
arXiv Detail & Related papers (2024-05-21T18:02:07Z) - User-Aware Prefix-Tuning is a Good Learner for Personalized Image
Captioning [35.211749514733846]
Traditional image captioning methods often overlook the preferences and characteristics of users.
Most existing methods emphasize the user context fusion process by memory networks or transformers.
We propose a novel personalized image captioning framework that leverages user context to consider personality factors.
arXiv Detail & Related papers (2023-12-08T02:08:00Z) - Leveraging Unpaired Data for Vision-Language Generative Models via Cycle
Consistency [47.3163261953469]
Current vision-language generative models rely on expansive corpora of paired image-text data to attain optimal performance and generalization capabilities.
We introduce ITIT: an innovative training paradigm grounded in the concept of cycle consistency which allows vision-language training on unpaired image and text data.
ITIT is comprised of a joint image-text encoder with disjoint image and text decoders that enable bidirectional image-to-text and text-to-image generation in a single framework.
arXiv Detail & Related papers (2023-10-05T17:55:19Z) - ASPIRE: Language-Guided Data Augmentation for Improving Robustness Against Spurious Correlations [43.323791505213634]
ASPIRE (Language-guided Data Augmentation for SPurIous correlation REmoval) is a solution for supplementing the training dataset with images without spurious features.
It can generate non-spurious images without requiring any group labeling or existing non-spurious images in the training set.
It improves the worst-group classification accuracy of prior methods by 1% - 38%.
arXiv Detail & Related papers (2023-08-19T20:18:15Z) - COSA: Concatenated Sample Pretrained Vision-Language Foundation Model [78.32081709802873]
Most vision-language foundation models employ image-text datasets for pretraining.
We propose COSA, a COncatenated SAmple pretrained vision-language foundation model.
We achieve this by sequentially concatenating multiple image-text pairs as inputs for pretraining.
This transformation effectively converts existing image-text corpora into a pseudo long-form video-paragraph corpus.
arXiv Detail & Related papers (2023-06-15T12:29:42Z) - Auditing Gender Presentation Differences in Text-to-Image Models [54.16959473093973]
We study how gender is presented differently in text-to-image models.
By probing gender indicators in the input text, we quantify the frequency differences of presentation-centric attributes.
We propose an automatic method to estimate such differences.
arXiv Detail & Related papers (2023-02-07T18:52:22Z) - Towards Multimodal Vision-Language Models Generating Non-Generic Text [2.102846336724103]
Vision-language models can assess visual context in an image and generate descriptive text.
Recent work has used optical character recognition to supplement visual information with text extracted from an image.
In this work, we contend that vision-language models can benefit from additional information that can be extracted from an image, but are not used by current models.
arXiv Detail & Related papers (2022-07-09T01:56:35Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
Given a series of natural language captions, an agent must generate a sequence of images that correspond to the captions.
Prior work has introduced recurrent generative models which outperform synthesis text-to-image models on this task.
We present a number of improvements to prior modeling approaches, including the addition of a dual learning framework.
arXiv Detail & Related papers (2021-05-20T20:42:42Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.