論文の概要: Handbook on Leveraging Lines for Two-View Relative Pose Estimation
- arxiv url: http://arxiv.org/abs/2309.16040v1
- Date: Wed, 27 Sep 2023 21:43:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 18:36:50.750824
- Title: Handbook on Leveraging Lines for Two-View Relative Pose Estimation
- Title(参考訳): 2視点相対ポーズ推定のためのライン活用ハンドブック
- Authors: Petr Hruby, Shaohui Liu, R\'emi Pautrat, Marc Pollefeys, Daniel Barath
- Abstract要約: 本稿では,画像ペア間の相対的なポーズを,点,線,およびそれらの一致をハイブリッド方式で共同で推定する手法を提案する。
我々のハイブリッドフレームワークは、すべての構成の利点を組み合わせて、挑戦的な環境で堅牢で正確な見積もりを可能にします。
- 参考スコア(独自算出の注目度): 82.72686460985297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an approach for estimating the relative pose between calibrated
image pairs by jointly exploiting points, lines, and their coincidences in a
hybrid manner. We investigate all possible configurations where these data
modalities can be used together and review the minimal solvers available in the
literature. Our hybrid framework combines the advantages of all configurations,
enabling robust and accurate estimation in challenging environments. In
addition, we design a method for jointly estimating multiple vanishing point
correspondences in two images, and a bundle adjustment that considers all
relevant data modalities. Experiments on various indoor and outdoor datasets
show that our approach outperforms point-based methods, improving
AUC@10$^\circ$ by 1-7 points while running at comparable speeds. The source
code of the solvers and hybrid framework will be made public.
- Abstract(参考訳): 本研究では, 点, 線, およびそれらの一致をハイブリッドに利用することにより, 校正画像対間の相対ポーズを推定する手法を提案する。
これらのデータモダリティを併用可能な構成をすべて検討し,文献で利用可能な最小限の解法について検討する。
当社のハイブリッドフレームワークは,すべての構成のメリットを組み合わせることで,困難な環境での堅牢かつ正確な推定を可能にします。
さらに,2つの画像における複数の消失点対応を共同で推定する手法と,関連するすべてのデータモダリティを考慮したバンドル調整を考案する。
各種屋内および屋外データセットを用いた実験により,本手法は点ベース法より優れ,AUC@10$^\circ$が1-7ポイント向上し,比較速度が向上した。
ソルバとハイブリッドフレームワークのソースコードは公開される予定だ。
関連論文リスト
- Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
マルチウェイポイントクラウドモザイクのための新しいフレームワーク(水曜日)を紹介する。
我々のアプローチの核心は、重複を識別し、注意点を洗練する学習されたペアワイズ登録アルゴリズムODINである。
4つの多種多様な大規模データセットを用いて、我々の手法は、全てのベンチマークにおいて大きなマージンで、最先端のペアとローテーションの登録結果を比較した。
論文 参考訳(メタデータ) (2024-03-30T17:29:13Z) - AlignMiF: Geometry-Aligned Multimodal Implicit Field for LiDAR-Camera
Joint Synthesis [98.3959800235485]
近年,複数のモダリティを単一のフィールド内で探索する手法がいくつか存在しており,異なるモダリティから暗黙的な特徴を共有して再現性能を向上させることを目的としている。
本研究では,LiDAR-カメラ共同合成の多モード暗黙的場に関する包括的解析を行い,その根底にある問題はセンサの誤配にあることを示した。
幾何学的に整合した多モード暗黙の場であるAlignMiFを導入し,2つのモジュール,Geometry-Aware Alignment (GAA) とShared Geometry Initialization (SGI)を提案する。
論文 参考訳(メタデータ) (2024-02-27T13:08:47Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
マルチビュークラスタリングのための新しいデュアルコントラストキャリブレーションネットワーク(DealMVC)を提案する。
まず、グローバルなクロスビュー特徴を得るための融合機構を設計し、その上で、ビュー特徴類似性グラフと高信頼な擬ラベルグラフを整列させることにより、グローバルなコントラストキャリブレーション損失を提案する。
トレーニング手順の間、対話型クロスビュー機能は、ローカルレベルとグローバルレベルの両方で共同最適化される。
論文 参考訳(メタデータ) (2023-08-17T14:14:28Z) - Unsupervised Manifold Alignment with Joint Multidimensional Scaling [4.683612295430957]
2つの異なる領域からのデータセットを共通の低次元ユークリッド空間にマッピングする関節多次元スケーリングを導入する。
本稿では,多次元スケーリング(MDS)とワッサーシュタイン・プロクリスト解析を共同最適化問題に統合する。
提案手法の有効性を,2つのデータセットの同時可視化,教師なし不均一領域適応,グラフマッチング,タンパク質構造アライメントなど,いくつかのアプリケーションで実証した。
論文 参考訳(メタデータ) (2022-07-06T21:02:42Z) - Hybrid Relation Guided Set Matching for Few-shot Action Recognition [51.3308583226322]
本稿では,2つの鍵成分を組み込んだHybrid Relation Guided Set Matching (HyRSM) 手法を提案する。
ハイブリッドリレーションモジュールの目的は、エピソード内の関連関係とクロスビデオの完全活用により、タスク固有の埋め込みを学習することである。
我々は,HyRSMを6つの挑戦的ベンチマークで評価した。
論文 参考訳(メタデータ) (2022-04-28T11:43:41Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Improving Calibration in Deep Metric Learning With Cross-Example Softmax [11.014197662964335]
我々は,トップ$kとしきい値の関係性を組み合わせたクロスサンプルソフトマックスを提案する。
各イテレーションにおいて、提案された損失は、すべてのクエリがすべての非マッチングイメージよりも、すべてのクエリが一致するイメージに近づくことを奨励する。
これにより、世界規模で校正された類似度メートル法が導き出され、距離は関連性の絶対測度としてより解釈可能である。
論文 参考訳(メタデータ) (2020-11-17T18:47:28Z) - Cluster-level Feature Alignment for Person Re-identification [16.01713931617725]
本稿では、データセット全体にわたるクラスタレベルの特徴アライメントという、別の特徴アライメントのモダリティを探索する。
クラスタレベルの特徴アライメントは,データセットの概要から反復的なアグリゲーションとアライメントから構成される。
論文 参考訳(メタデータ) (2020-08-15T23:47:47Z) - Indoor Layout Estimation by 2D LiDAR and Camera Fusion [3.2387553628943535]
本稿では,画像列とLiDARデータセットの融合による屋内レイアウト推定と再構築のためのアルゴリズムを提案する。
提案システムでは,2次元LiDAR情報とインテンシティ画像の両方を移動プラットフォームで収集する。
論文 参考訳(メタデータ) (2020-01-15T16:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。