論文の概要: Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling
- arxiv url: http://arxiv.org/abs/2309.16139v1
- Date: Thu, 28 Sep 2023 03:40:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 18:07:32.947767
- Title: Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling
- Title(参考訳): 不確かさと多様性サンプリングによるインスタンスセグメンテーションのための2段階アクティブラーニング
- Authors: Ke Yu, Stephen Albro, Giulia DeSalvo, Suraj Kothawade, Abdullah
Rashwan, Sasan Tavakkol, Kayhan Batmanghelich, Xiaoqi Yin
- Abstract要約: 本研究では,不確実性に基づくサンプリングと多様性に基づくサンプリングを統合したポストホック能動学習アルゴリズムを提案する。
提案アルゴリズムは単純で実装が容易なだけでなく,様々なデータセットに対して優れた性能を実現する。
- 参考スコア(独自算出の注目度): 20.982992381790034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training high-quality instance segmentation models requires an abundance of
labeled images with instance masks and classifications, which is often
expensive to procure. Active learning addresses this challenge by striving for
optimum performance with minimal labeling cost by selecting the most
informative and representative images for labeling. Despite its potential,
active learning has been less explored in instance segmentation compared to
other tasks like image classification, which require less labeling. In this
study, we propose a post-hoc active learning algorithm that integrates
uncertainty-based sampling with diversity-based sampling. Our proposed
algorithm is not only simple and easy to implement, but it also delivers
superior performance on various datasets. Its practical application is
demonstrated on a real-world overhead imagery dataset, where it increases the
labeling efficiency fivefold.
- Abstract(参考訳): 高品質なインスタンスセグメンテーションモデルのトレーニングには、インスタンスマスクと分類を備えたラベル付きイメージの豊富さが必要となる。
アクティブラーニングは、ラベリングのための最も情報的で代表的なイメージを選択することで、最小限のラベリングコストで最適なパフォーマンスを追求することで、この課題に対処する。
潜在的な可能性にもかかわらず、アクティブラーニングは、ラベリングを少なくする画像分類のような他のタスクと比較して、インスタンスのセグメンテーションではあまり研究されていない。
本研究では,不確実性に基づくサンプリングと多様性に基づくサンプリングを統合したポストホック能動学習アルゴリズムを提案する。
提案アルゴリズムは単純で実装が容易なだけでなく,様々なデータセットに対して優れた性能を実現する。
その実用的な応用は、実際のオーバーヘッド画像データセットで実証され、ラベリング効率を5倍にする。
関連論文リスト
- Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
本稿では,既存情報の利用を最大化する観点から,新しいサンプルインスタンス分割法を提案する。
まず、ラベルのないデータを学習して擬似ラベルを生成し、利用可能なサンプルの数を増やすことで、モデルが完全に活用するのに役立つ。
第二に、テキストと画像の特徴を統合することにより、より正確な分類結果を得ることができる。
論文 参考訳(メタデータ) (2024-10-21T14:44:08Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
アクティブラーニング(英: Active Learning)は、ラベリングのための最も重要なサンプルを選択することで、高価なラベリングの問題に対処する研究分野である。
アクティブな学習環境における初期ラベル付けのための最も情報性の高いサンプル群を選択するために,多様性に基づく新しい初期データセット選択アルゴリズムを提案する。
また、一貫性に基づく埋め込みの多様性に基づくサンプリングを用いた、新しいアクティブな学習クエリ戦略を提案する。
論文 参考訳(メタデータ) (2022-07-25T16:11:55Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
本稿では,単一段階弱教師付きセマンティックセマンティックセマンティックセマンティクス(WSSS)と半教師付きセマンティクスセマンティクスセマンティクス(SSSS)のための自己教師付き低ランクネットワーク(SLRNet)を提案する。
SLRNetは、画像の異なるビューから複数の注意深いLR表現を同時に予測し、正確な擬似ラベルを学習する。
Pascal VOC 2012、COCO、L2IDデータセットの実験では、SLRNetは最先端のWSSSメソッドとSSSSメソッドの両方で、さまざまな設定で優れています。
論文 参考訳(メタデータ) (2022-03-19T09:19:55Z) - A Pixel-Level Meta-Learner for Weakly Supervised Few-Shot Semantic
Segmentation [40.27705176115985]
Few-shotのセマンティックセマンティックセグメンテーションは、興味のある新しいクラスのために、地上の真実のピクセルレベルのラベルを持つ少数の画像しか利用できない学習タスクに対処する。
限られたデータとその意味ラベルから擬似画素レベルのセグメンテーションマスクを予測するメタラーニングフレームワークを提案する。
提案する学習モデルは,画素レベルのメタラーナーとみなすことができる。
論文 参考訳(メタデータ) (2021-11-02T08:28:11Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
本稿では,従来の画像レベルのアプローチとオブジェクトレベルのアプローチを一般化した領域レベルのアプローチに仮定する新たな戦略を提案する。
その結果,本手法はラベル付けの労力を大幅に削減し,クラス不均衡や散らかったシーンを生かしたリアルなデータに対する希少なオブジェクト検索を改善することが示唆された。
論文 参考訳(メタデータ) (2021-08-20T14:02:38Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
インスタンスセグメンテーションのための新規かつ原則的な半教師付きアクティブ学習フレームワークを提案する。
具体的には,クラス,バウンディングボックス,マスクの手がかりを明示的に評価するトリプレットスコア予測(tsp)という不確実性サンプリング戦略を提案する。
医用画像データセットを用いた結果から,提案手法が有意義な方法で利用可能なデータから知識を具現化することを示す。
論文 参考訳(メタデータ) (2020-12-09T02:36:52Z) - Reinforced active learning for image segmentation [34.096237671643145]
深部強化学習(RL)に基づく意味的セグメンテーションのための新しいアクティブラーニング戦略を提案する。
エージェントは、ラベルなしデータのプールからラベル付けされる小さな情報領域(画像全体とは対照的に)のサブセットを選択するポリシーを学ぶ。
本手法では, 意味的セグメンテーション問題の大規模性質に適応して, 能動的学習のための深部Q-network (DQN) の定式化を新たに提案する。
論文 参考訳(メタデータ) (2020-02-16T14:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。