DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models
- URL: http://arxiv.org/abs/2309.16292v3
- Date: Thu, 22 Feb 2024 03:24:26 GMT
- Title: DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models
- Authors: Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao Ma, Pinlong Cai, Min
Dou, Botian Shi, Liang He, Yu Qiao
- Abstract summary: We propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge.
Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability.
To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles.
- Score: 30.23228092898916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in autonomous driving have relied on data-driven
approaches, which are widely adopted but face challenges including dataset
bias, overfitting, and uninterpretability. Drawing inspiration from the
knowledge-driven nature of human driving, we explore the question of how to
instill similar capabilities into autonomous driving systems and summarize a
paradigm that integrates an interactive environment, a driver agent, as well as
a memory component to address this question. Leveraging large language models
(LLMs) with emergent abilities, we propose the DiLu framework, which combines a
Reasoning and a Reflection module to enable the system to perform
decision-making based on common-sense knowledge and evolve continuously.
Extensive experiments prove DiLu's capability to accumulate experience and
demonstrate a significant advantage in generalization ability over
reinforcement learning-based methods. Moreover, DiLu is able to directly
acquire experiences from real-world datasets which highlights its potential to
be deployed on practical autonomous driving systems. To the best of our
knowledge, we are the first to leverage knowledge-driven capability in
decision-making for autonomous vehicles. Through the proposed DiLu framework,
LLM is strengthened to apply knowledge and to reason causally in the autonomous
driving domain. Project page: https://pjlab-adg.github.io/DiLu/
Related papers
- Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment [15.52530518623987]
Large Language Models (LLMs) have the potential to enhance various aspects of autonomous driving systems.
This paper introduces novel concepts and approaches to designing LLMs for autonomous driving (LLM4AD)
arXiv Detail & Related papers (2024-10-20T04:36:19Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLM is a framework that can perform close-loop autonomous driving in realistic simulators.
We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system.
This model can plug-and-play in existing AD systems such as Apollo for close-loop driving.
arXiv Detail & Related papers (2023-12-14T18:59:05Z) - Towards Knowledge-driven Autonomous Driving [37.003908817857095]
This paper explores the emerging knowledge-driven autonomous driving technologies.
Our investigation highlights the limitations of current autonomous driving systems.
Knowledge-driven methods with the abilities of cognition, generalization and life-long learning emerge as a promising way to overcome these challenges.
arXiv Detail & Related papers (2023-12-07T14:17:17Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - A Language Agent for Autonomous Driving [31.359413767191608]
We propose a paradigm shift to integrate human-like intelligence into autonomous driving systems.
Our approach, termed Agent-Driver, transforms the traditional autonomous driving pipeline by introducing a versatile tool library.
Powered by Large Language Models (LLMs), our Agent-Driver is endowed with intuitive common sense and robust reasoning capabilities.
arXiv Detail & Related papers (2023-11-17T18:59:56Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
We present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text.
Our approach demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations.
arXiv Detail & Related papers (2023-10-26T17:56:35Z) - Receive, Reason, and React: Drive as You Say with Large Language Models
in Autonomous Vehicles [13.102404404559428]
We propose a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles.
Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks.
We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands.
arXiv Detail & Related papers (2023-10-12T04:56:01Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.