Anti-Matthew FL: Bridging the Performance Gap in Federated Learning to Counteract the Matthew Effect
- URL: http://arxiv.org/abs/2309.16338v2
- Date: Tue, 27 Aug 2024 01:17:34 GMT
- Title: Anti-Matthew FL: Bridging the Performance Gap in Federated Learning to Counteract the Matthew Effect
- Authors: Jiashi Gao, Xin Yao, Xuetao Wei,
- Abstract summary: Federated learning (FL) facilitates model training across heterogeneous and diverse datasets.
In this work, we propose anti-Matthew fairness for the global model at the client level.
We show that our proposed anti-Matthew FL outperforms other state-of-the-art FL algorithms in achieving a high-performance global model.
- Score: 4.716839088197377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) stands as a paradigmatic approach that facilitates model training across heterogeneous and diverse datasets originating from various data providers. However, conventional FLs fall short of achieving consistent performance, potentially leading to performance degradation for clients who are disadvantaged in data resources. Influenced by the Matthew effect, deploying a performance-imbalanced global model in applications further impedes the generation of high-quality data from disadvantaged clients, exacerbating the disparities in data resources among clients. In this work, we propose anti-Matthew fairness for the global model at the client level, requiring equal accuracy and equal decision bias across clients. To balance the trade-off between achieving anti-Matthew fairness and performance optimality, we formalize the anti-Matthew effect federated learning (anti-Matthew FL) as a multi-constrained multi-objectives optimization (MCMOO) problem and propose a three-stage multi-gradient descent algorithm to obtain the Pareto optimality. We theoretically analyze the convergence and time complexity of our proposed algorithms. Additionally, through extensive experimentation, we demonstrate that our proposed anti-Matthew FL outperforms other state-of-the-art FL algorithms in achieving a high-performance global model while effectively bridging performance gaps among clients. We hope this work provides valuable insights into the manifestation of the Matthew effect in FL and other decentralized learning scenarios and can contribute to designing fairer learning mechanisms, ultimately fostering societal welfare.
Related papers
- FedMABA: Towards Fair Federated Learning through Multi-Armed Bandits Allocation [26.52731463877256]
In this paper, we introduce the concept of adversarial multi-armed bandit to optimize the proposed objective with explicit constraints on performance disparities.
Practically, we propose a novel multi-armed bandit-based allocation FL algorithm (FedMABA) to mitigate performance unfairness among diverse clients with different data distributions.
arXiv Detail & Related papers (2024-10-26T10:41:45Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Fair and Consistent Federated Learning [48.19977689926562]
Federated learning (FL) has gain growing interests for its capability of learning from distributed data sources collectively.
We propose an FL framework to jointly consider performance consistency and algorithmic fairness across different local clients.
arXiv Detail & Related papers (2021-08-19T01:56:08Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
Federated learning provides a communication-efficient and privacy-preserving training process.
Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions.
We propose Auto-weighted Robust Federated Learning (arfl) to provide robustness against corrupted data sources.
arXiv Detail & Related papers (2021-01-14T21:54:55Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.