QSETH strikes again: finer quantum lower bounds for lattice problem,
strong simulation, hitting set problem, and more
- URL: http://arxiv.org/abs/2309.16431v1
- Date: Thu, 28 Sep 2023 13:30:20 GMT
- Title: QSETH strikes again: finer quantum lower bounds for lattice problem,
strong simulation, hitting set problem, and more
- Authors: Yanlin Chen, Yilei Chen, Rajendra Kumar, Subhasree Patro, Florian
Speelman
- Abstract summary: There are problems for which there is no trivial' computational advantage possible with the current quantum hardware.
We would like to have evidence that it is difficult to solve those problems on quantum computers; but what is their exact complexity?
By the use of the QSETH framework [Buhrman-Patro-Speelman 2021], we are able to understand the quantum complexity of a few natural variants of CNFSAT.
- Score: 5.69353915790503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While seemingly undesirable, it is not a surprising fact that there are
certain problems for which quantum computers offer no computational advantage
over their respective classical counterparts. Moreover, there are problems for
which there is no `useful' computational advantage possible with the current
quantum hardware. This situation however can be beneficial if we don't want
quantum computers to solve certain problems fast - say problems relevant to
post-quantum cryptography. In such a situation, we would like to have evidence
that it is difficult to solve those problems on quantum computers; but what is
their exact complexity?
To do so one has to prove lower bounds, but proving unconditional time lower
bounds has never been easy. As a result, resorting to conditional lower bounds
has been quite popular in the classical community and is gaining momentum in
the quantum community. In this paper, by the use of the QSETH framework
[Buhrman-Patro-Speelman 2021], we are able to understand the quantum complexity
of a few natural variants of CNFSAT, such as parity-CNFSAT or counting-CNFSAT,
and also are able to comment on the non-trivial complexity of
approximate-#CNFSAT; both of these have interesting implications about the
complexity of (variations of) lattice problems, strong simulation and hitting
set problem, and more.
In the process, we explore the QSETH framework in greater detail than was
(required and) discussed in the original paper, thus also serving as a useful
guide on how to effectively use the QSETH framework.
Related papers
- Complexity Theory for Quantum Promise Problems [5.049812996253858]
We study the relationship between quantum cryptography and complexity theory, especially within Impagliazzo's five worlds framework.
We focus on complexity classes p/mBQP, p/mQ(C)MA, $mathrmp/mQSZK_hv$, p/mQIP, and p/mPSPACE, where "p/mC" denotes classes with pure (p) or mixed (m) states.
We apply this framework to cryptography, showing that breaking one-way state generators, pseudorandom states, and EFI is bounded by mQCMA or
arXiv Detail & Related papers (2024-11-06T07:29:52Z) - Computable and noncomputable in the quantum domain: statements and conjectures [0.70224924046445]
We consider an approach to the question of describing a class of problems whose solution can be accelerated by a quantum computer.
The unitary operation that transforms the initial quantum state into the desired one must be decomposable into a sequence of one- and two-qubit gates.
arXiv Detail & Related papers (2024-03-25T15:47:35Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Query Complexity of Boolean Functions under Indefinite Causal
Order [0.9208007322096533]
We study the query complexity of Boolean functions under general higher order quantum computations.
We show that the recently introduced class of quantum circuits with quantum control of causal order cannot lead to any reduction in query complexity.
We find some functions for which the minimum error with which they can be computed using two queries is strictly lower when exploiting causally indefinite supermaps.
arXiv Detail & Related papers (2023-07-18T13:12:55Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum communication complexity of linear regression [0.05076419064097732]
We show that quantum computers have provable and exponential speedups in terms of communication for some fundamental linear algebra problems.
We propose an efficient quantum protocol for quantum singular value transformation.
arXiv Detail & Related papers (2022-10-04T13:27:01Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Variational Quantum Algorithms [1.9486734911696273]
Quantum computers promise to unlock applications such as large quantum systems or solving large-scale linear algebra problems.
Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth.
Variational Quantum Algorithms (VQAs), which employ a classical simulation to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints.
arXiv Detail & Related papers (2020-12-16T21:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.