Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2012.09265v1
- Date: Wed, 16 Dec 2020 21:00:46 GMT
- Title: Variational Quantum Algorithms
- Authors: M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru
Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz
Cincio, Patrick J. Coles
- Abstract summary: Quantum computers promise to unlock applications such as large quantum systems or solving large-scale linear algebra problems.
Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth.
Variational Quantum Algorithms (VQAs), which employ a classical simulation to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints.
- Score: 1.9486734911696273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applications such as simulating large quantum systems or solving large-scale
linear algebra problems are immensely challenging for classical computers due
their extremely high computational cost. Quantum computers promise to unlock
these applications, although fault-tolerant quantum computers will likely not
be available for several years. Currently available quantum devices have
serious constraints, including limited qubit numbers and noise processes that
limit circuit depth. Variational Quantum Algorithms (VQAs), which employ a
classical optimizer to train a parametrized quantum circuit, have emerged as a
leading strategy to address these constraints. VQAs have now been proposed for
essentially all applications that researchers have envisioned for quantum
computers, and they appear to the best hope for obtaining quantum advantage.
Nevertheless, challenges remain including the trainability, accuracy, and
efficiency of VQAs. In this review article we present an overview of the field
of VQAs. Furthermore, we discuss strategies to overcome their challenges as
well as the exciting prospects for using them as a means to obtain quantum
advantage.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - State-Averaged Orbital-Optimized VQE: A quantum algorithm for the
democratic description of ground and excited electronic states [0.0]
The SA-OO-VQE package aims to answer both problems with its hybrid quantum-classical conception based on a typical Variational Quantum Eigensolver approach.
The SA-OO-VQE has the ability to treat degenerate (or quasi-degenerate) states on the same footing, thus avoiding known numerical optimization problems around avoided crossings or conical intersections.
arXiv Detail & Related papers (2024-01-22T12:16:37Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Ans\"atze for Noisy Variational Quantum Eigensolvers [0.0]
The Variational Quantum Eigensolver (VQE) has gained popularity as a contender for a chance at quantum advantage with near-term quantum computers.
Too deep ans"atze can hinder near-term viability, or lead to trainability issues that render the algorithm inefficient.
This thesis examines different ans"atze proposed for quantum chemistry, examining their noise-resilience and viability in state-of-the-art quantum computers.
arXiv Detail & Related papers (2022-12-06T17:57:41Z) - Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation [5.381727213688375]
We are still a long way from reaching the maturity of a full-fledged quantum computer.
An outstanding challenge is to come up with an application that can reliably carry out a nontrivial task.
Several near-term quantum computing techniques have been proposed to characterize and mitigate errors.
arXiv Detail & Related papers (2022-11-16T07:53:15Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
arXiv Detail & Related papers (2022-05-10T17:14:57Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.