論文の概要: SI-SD: Sleep Interpreter through awake-guided cross-subject Semantic Decoding
- arxiv url: http://arxiv.org/abs/2309.16457v3
- Date: Sun, 19 May 2024 20:15:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 00:30:29.345880
- Title: SI-SD: Sleep Interpreter through awake-guided cross-subject Semantic Decoding
- Title(参考訳): SI-SD:Awake-Guided Cross-Subject Semantic Decodingによるスリープインタプリタ
- Authors: Hui Zheng, Zhong-Tao Chen, Hai-Teng Wang, Jian-Yang Zhou, Lin Zheng, Pei-Yang Lin, Yun-Zhe Liu,
- Abstract要約: 我々は、新しい認知神経科学実験を設計し、覚醒と睡眠の間に134人の被験者から、包括的、十分に注意された脳波(EEG)データセットを収集した。
我々は、覚醒と睡眠の間のニューラル潜伏シーケンスの位置ワイドアライメントにより、睡眠意味のデコーディングを強化するSI-SDを開発した。
- 参考スコア(独自算出の注目度): 5.283755248013948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding semantic content from brain activity during sleep represents a major goal in neuroscience. While studies in rodents have shown spontaneous neural reactivation of memories during sleep, capturing the semantic content of human sleep poses a significant challenge due to the absence of well-annotated sleep datasets and the substantial differences in neural patterns between wakefulness and sleep. To address these challenges, we designed a novel cognitive neuroscience experiment and collected a comprehensive, well-annotated electroencephalography (EEG) dataset from 134 subjects during both wakefulness and sleep. Leveraging this benchmark dataset, we developed SI-SD that enhances sleep semantic decoding through the position-wise alignment of neural latent sequence between wakefulness and sleep. In the 15-way classification task, our model achieves 24.12% and 21.39% top-1 accuracy on unseen subjects for NREM 2/3 and REM sleep, respectively, surpassing all other baselines. With additional fine-tuning, decoding performance improves to 30.32% and 31.65%, respectively. Besides, inspired by previous neuroscientific findings, we systematically analyze how the "Slow Oscillation" event impacts decoding performance in NREM 2/3 sleep -- decoding performance on unseen subjects further improves to 40.02%. Together, our findings and methodologies contribute to a promising neuro-AI framework for decoding brain activity during sleep.
- Abstract(参考訳): 睡眠中の脳の活動から意味的内容を理解することは、神経科学の主要な目標である。
げっ歯類の研究は睡眠中の記憶の自発的な神経活動を示しているが、人間の睡眠のセマンティックな内容を把握することは、よく注釈された睡眠データセットが欠如していることと、覚醒と睡眠の間の神経パターンが著しく異なることによる重要な課題である。
これらの課題に対処するため、我々は新しい認知神経科学実験を設計し、覚醒と睡眠の間に134人の被験者から包括的、注意深い脳波(EEG)データセットを収集した。
このベンチマークデータセットを利用して、ウェイクフルネスと睡眠の間のニューラル潜時シーケンスの位置ワイドアライメントにより、睡眠セマンティックデコーディングを強化するSI-SDを開発した。
NREM 2/3 と REM では,それぞれ 24.12% と 21.39% のトップ-1 の精度を達成し,他のすべてのベースラインを上回った。
さらなる微調整により、復号性能は30.32%と31.65%に向上した。
さらに、これまでの神経科学的な発見に触発されて、「スローオシレーション」イベントがNREM 2/3睡眠におけるデコードパフォーマンスにどのように影響するかを系統的に分析した。
睡眠中の脳活動の復号化を目的とした,有望なニューロAIフレームワークの構築に本研究の成果と方法論が寄与した。
関連論文リスト
- A Systematic Review and Meta-Analysis on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence [0.0]
本研究は,近年の文献を包括的,体系的,メタ分析して,睡眠研究における様々なアプローチとその成果を分析することを目的としている。
脳波は、睡眠ステージングや障害研究に最もよく用いられる身体パラメータである。
論文 参考訳(メタデータ) (2024-05-17T11:09:33Z) - NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG [2.3310092106321365]
睡眠ステージ分類は、睡眠障害を診断し、睡眠の質を評価する重要な側面である。
近年の深層学習の進歩は、睡眠段階分類の自動化を著しく促進している。
本稿では,未ラベルの単一チャンネル睡眠脳波(EEG)信号を利用する自己教師型学習フレームワークであるNeuroNetを紹介する。
論文 参考訳(メタデータ) (2024-04-10T18:32:22Z) - Domain Invariant Representation Learning and Sleep Dynamics Modeling for
Automatic Sleep Staging [6.86283473936335]
ニューラルネットワークに基づく睡眠ステージングモデルDREAMを提案し,生理的信号とモデル睡眠ダイナミクスから領域一般化表現を学習する。
DREAMは、様々な被験者の睡眠信号から睡眠関連および被写体不変表現を学習し、シーケンシャル信号セグメントと睡眠ステージ間の相互作用を捉えて睡眠ダイナミクスをモデル化する。
睡眠ステージ予測実験,ケーススタディ,ラベルなしデータの使用,不確実性など,DREAMの優位性を示すための総合的な実証的研究を行った。
論文 参考訳(メタデータ) (2023-12-06T00:28:08Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
睡眠活動認識法は、被験者の睡眠覚醒サイクルを評価し、監視し、特徴づけ、行動の変化を検出する指標を提供することができる。
本稿では,スマートフォンから受動的に知覚されたデータを連続的に操作して,睡眠の特徴を識別し,重要な睡眠エピソードを識別する一般的な方法を提案する。
これらの装置は、その用途により、連続的で客観的で非侵襲的な方法で被験者の生体リズムをプロファイルするための優れた代替データ源となっている。
論文 参考訳(メタデータ) (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
先行学習を失うことなく、新しいタスクやスキルを連続して学習することは、人工ニューラルネットワークと生物学的ニューラルネットワークの両方にとって、計算上の課題である。
本稿では,3つの異なる睡眠成分のモデル化が,人工ニューラルネットワークの連続学習にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2022-09-09T13:45:27Z) - Deep Learning for Sleep Stages Classification: Modified Rectified Linear
Unit Activation Function and Modified Orthogonal Weight Initialisation [27.681891555949672]
本研究の目的は,畳み込みニューラルネットワークの精度を高め,学習時間を短縮することである。
提案システムは,活性化関数としてシグモイド活性化関数の代わりにLeaky Rectified Linear Unit (ReLU) を用いる。
論文 参考訳(メタデータ) (2022-02-18T18:29:15Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
本稿では,畳み込みニューラルネットワークを用いた3次元脳磁気共鳴(MR)画像からの脳年齢回帰の課題に着目した。
予測モデルの性能を損なうことなく、できるだけ多くのノイズを入力に追加することを目的としたノイズモデルを実装した。
本手法は,英国バイオバンクの13750個の脳MR画像を用いて検討し,既存の神経病理学文献と一致している。
論文 参考訳(メタデータ) (2021-08-11T18:08:09Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。