Constraining Ultralight Dark Matter through an Accelerated Resonant Search
- URL: http://arxiv.org/abs/2309.16600v2
- Date: Thu, 11 Jul 2024 10:36:08 GMT
- Title: Constraining Ultralight Dark Matter through an Accelerated Resonant Search
- Authors: Zitong Xu, Xiaolin Ma, Kai Wei, Yuxuan He, Xing Heng, Xiaofei Huang, Tengyu Ai, Jian Liao, Wei Ji, Jia Liu, Xiao-Ping Wang, Dmitry Budker,
- Abstract summary: We investigate the nucleon couplings of ultralight axion dark matter using a magnetometer operating in a nuclear magnetic resonance mode.
We achieve an ultrahigh sensitivity of 0.73 fT/Hz$1/2$ at around 5 Hz, corresponding to energy resolution of approximately 1.5$times 10-23,rmeV/Hz1/2$.
- Score: 14.200713169114342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Experiments aimed at detecting ultralight dark matter typically rely on resonant effects, which are sensitive to the dark matter mass that matches the resonance frequency. In this study, we investigate the nucleon couplings of ultralight axion dark matter using a magnetometer operating in a nuclear magnetic resonance (NMR) mode. Our approach involves the use of a $^{21}$Ne spin-based sensor, which features the lowest nuclear magnetic moment among noble-gas spins. This configuration allows us to achieve an ultrahigh sensitivity of 0.73 fT/Hz$^{1/2}$ at around 5 Hz, corresponding to energy resolution of approximately 1.5$\times 10^{-23}\,\rm{eV/Hz^{1/2}}$. Our analysis reveals that under certain conditions it is beneficial to scan the frequency with steps significantly larger than the resonance width. The analytical results are in agreement with experimental data and the scan strategy is potentially applicable to other resonant searches. Further, our study establishes stringent constraints on axion-like particles (ALP) in the 4.5--15.5 Hz Compton-frequency range coupling to neutrons and protons, improving on prior work by several-fold. Within a band around 4.6--6.6 Hz and around 7.5 Hz, our laboratory findings surpass astrophysical limits derived from neutron-star cooling. Hence, we demonstrate an accelerated resonance search for ultralight dark matter, achieving an approximately 30-fold increase in scanning step while maintaining competitive sensitivity.
Related papers
- Ultralight dark matter detection with levitated ferromagnets [39.9821498525859]
We study the response of a levitated ferromagnet to an applied AC magnetic field.
We show that existing levitated ferromagnet setups can already have comparable sensitivity to an axion-electron coupling.
Future setups can become sensitive probes of axion-electron coupling, dark-photon kinetic mixing, and axion-photon coupling.
arXiv Detail & Related papers (2024-08-27T18:00:03Z) - Search for ultralight dark matter with a frequency adjustable
diamagnetic levitated sensor [11.996998827367511]
bosonic ultralight (sub meV) dark matter is well motivated because it could couple to the Standard Model (SM) and induce new forces.
Previous MICROSCOPE and Eot Wash torsion experiments have achieved high accuracy in the sub-1 Hz region.
arXiv Detail & Related papers (2023-07-10T13:22:41Z) - Ultrasensitive atomic comagnetometer with enhanced nuclear spin
coherence [8.784565323288149]
A new relaxation mechanism is found in alkali-noble-gas comagnetometers.
operating in the self-compensation regime, our device achieves an ultrahigh inertial rotation sensitivity of $3times10-8$,rad/s/Hz$1/2$.
We propose to use this comagnetometer to search for exotic spin-dependent interactions involving proton and neutron spins.
arXiv Detail & Related papers (2022-10-17T12:45:21Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - High-Field Magnetometry with Hyperpolarized Nuclear Spins [0.0]
We propose and demonstrate a high-field spin magnetometer constructed from an ensemble of hyperpolarized $13C$ nuclear spins in diamond.
For quantum sensing at 7T and a single crystal sample, we demonstrate spectral resolution better than 100 mHz.
This work points to interesting opportunities for microscale NMR chemical sensors constructed from hyperpolarized nanodiamonds.
arXiv Detail & Related papers (2021-12-22T01:33:07Z) - Measurements of blackbody radiation-induced transition rates between
high-lying S, P and D Rydberg levels [47.187609203210705]
We report experimental measurements of the rates of blackbody radiation-induced transitions between high-lying (n>60) S, P and D Rydberg levels of rubidium atoms in a magneto-optical trap.
Our results reveal significant deviations of the measured transition rates from theory for well-defined ranges of the principal quantum number.
We conclude that it should be possible to use such external cavities to control and suppress the blackbody radiation-induced transitions.
arXiv Detail & Related papers (2021-11-30T12:22:32Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Search for axion-like dark matter with spin-based amplifiers [1.2928694303893393]
We demonstrate a new quantum sensor to search for ALPs in the mass range that spans about two decades from 8.3 feV to 744 feV.
Our sensor makes use of hyperpolarized long-lived nuclear spins as a pre-amplifier that effectively enhances coherently oscillating axion-like dark-matter field by a factor of >100.
Our experiment constrains the parameter space describing the coupling of ALPs to nucleons over our mass range, at 67.5 feV reaching $2.9times 10-9textrmGeV-1$ ($95%$ confidence level)
arXiv Detail & Related papers (2021-02-02T11:48:26Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Searching spin-mass interaction using a diamagnetic levitated magnetic
resonance force sensor [19.030035722672284]
Axion-like particles (ALPs) are predicted to mediate exotic interactions between spin and mass.
The proposed experiment tests the spin-mass resonant interaction between the polarized electron spins and a diamagnetically levitated microsphere.
The levitated microoscillator can prospectively enhance the sensitivity by nearly $103$ times over current experiments for ALPs with mass in the range 4 meV to 0.4 eV.
arXiv Detail & Related papers (2020-10-27T11:11:21Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.