論文の概要: Training a Large Video Model on a Single Machine in a Day
- arxiv url: http://arxiv.org/abs/2309.16669v1
- Date: Thu, 28 Sep 2023 17:59:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 12:45:11.577868
- Title: Training a Large Video Model on a Single Machine in a Day
- Title(参考訳): 1日で1台のマシンで大きなビデオモデルを訓練する
- Authors: Yue Zhao, Philipp Kr\"ahenb\"uhl
- Abstract要約: コンシューマグレードのGPUを1日に8台搭載した1台のマシン上で,最先端のビデオモデルをトレーニングする方法を示す。
IO、CPU、GPUの3つのボトルネックを特定し、それぞれを最適化します。
同等のアーキテクチャでは、私たちのパイプラインは以前の処理に比べて、$frac18$の計算で高い精度を実現しています。
- 参考スコア(独自算出の注目度): 5.247398948623659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Videos are big, complex to pre-process, and slow to train on.
State-of-the-art large-scale video models are trained on clusters of 32 or more
GPUs for several days. As a consequence, academia largely ceded the training of
large video models to industry. In this paper, we show how to still train a
state-of-the-art video model on a single machine with eight consumer-grade GPUs
in a day. We identify three bottlenecks, IO, CPU, and GPU computation, and
optimize each. The result is a highly efficient video training pipeline. For
comparable architectures, our pipeline achieves higher accuracies with
$\frac{1}{8}$ of the computation compared to prior work. Code is available at
https://github.com/zhaoyue-zephyrus/AVION.
- Abstract(参考訳): ビデオは巨大で、前処理が複雑で、トレーニングも遅い。
最先端の大規模ビデオモデルは、32以上のGPUのクラスタ上で数日間トレーニングされる。
その結果、アカデミックは大きなビデオモデルのトレーニングを産業に委譲した。
本稿では,1日に8つのコンシューマグレードGPUを持つ1台のマシン上で,最先端のビデオモデルをトレーニングする方法を示す。
IO、CPU、GPUの3つのボトルネックを特定し、それぞれを最適化する。
その結果,高効率なビデオトレーニングパイプラインが実現した。
同等のアーキテクチャの場合、パイプラインは以前の処理に比べて計算量の$\frac{1}{8}$で高い精度を実現します。
コードはhttps://github.com/zhaoyue-zephyrus/avionで入手できる。
関連論文リスト
- Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading [2.8231000588510757]
トランスフォーマーと大規模言語モデル(LLM)は、すべてのドメインで急速に採用されている。
変圧器の訓練は非常に高価で、しばしば記憶壁にぶつかる」
本稿では,LLMをCPUまたはGPU上で更新フェーズをスケジュールしたサブグループに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-10-26T00:43:59Z) - Video-Infinity: Distributed Long Video Generation [73.30145218077074]
拡散モデルは近年,映像生成において顕著な成果を上げている。
提案手法は,約5分で最大2,300フレームの映像を生成し,従来の手法の100倍の速度で長大な映像を生成する。
論文 参考訳(メタデータ) (2024-06-24T01:56:12Z) - Harvest Video Foundation Models via Efficient Post-Pretraining [67.30842563833185]
本稿では,画像から映像基盤モデルを抽出する効率的なフレームワークを提案する。
提案手法は,入力ビデオパッチをランダムにドロップし,プレトレーニング後の入力テキストをマスクアウトすることで,直感的に簡単である。
提案手法は,プレトレーニング済みの映像基盤モデルに匹敵する,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-30T14:06:16Z) - VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking [57.552798046137646]
Video masked autoencoder(ビデオマスクオートエンコーダ)は、ビデオ基礎モデルを構築するための、スケーラブルで汎用的な自己監督型プレトレーナーである。
我々は10億のパラメータを持つビデオViTモデルのトレーニングに成功した。
論文 参考訳(メタデータ) (2023-03-29T14:28:41Z) - FlexGen: High-Throughput Generative Inference of Large Language Models
with a Single GPU [89.2451963569343]
FlexGenは、単一のコモディティGPU上で大きな言語モデル(LLM)推論を実行するための世代エンジンである。
1つの16GB GPU上でOPT-175Bを実行する場合、FlexGenは最先端のオフロードシステムに比べてスループットが大幅に向上する。
HELMベンチマークでは、FlexGenは7つの代表サブシナリオに16GBのGPUで30Bモデルを21時間でベンチマークすることができる。
論文 参考訳(メタデータ) (2023-03-13T05:19:28Z) - Cramming: Training a Language Model on a Single GPU in One Day [64.18297923419627]
言語モデリングの最近のトレンドは、スケーリングによるパフォーマンス向上に焦点を当てている。
我々は,1つのコンシューマGPU上で1日間,マスク付き言語モデルを用いてゼロから完全に訓練されたトランスフォーマーベース言語モデルで達成可能なダウンストリーム性能について検討した。
この制約された設定であっても、大規模設定で観測されるスケーリングの法則に密接に従う性能を示す。
論文 参考訳(メタデータ) (2022-12-28T18:59:28Z) - EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens [57.354304637367555]
ビデオ表現学習のための驚くほど効率的なMVAアプローチであるEVERESTを提案する。
リッチなモーション特徴を含むトークンを発見し、事前トレーニングと微調整の両方の間、非形式的なトークンを破棄する。
提案手法は,MVAの計算とメモリ要求を大幅に低減する。
論文 参考訳(メタデータ) (2022-11-19T09:57:01Z) - An Analysis of Collocation on GPUs for Deep Learning Training [0.0]
マルチインスタンスGPU(MIG)はNVIDIAが導入した新しい技術で、GPUをより良いワークロードに分割することができる。
本稿では,MIG対応A100 GPUの各種サイズとモデルの組み合わせを含むディープラーニングワークロードにおける性能について検討する。
論文 参考訳(メタデータ) (2022-09-13T14:13:06Z) - Hydra: A System for Large Multi-Model Deep Learning [3.571623412954477]
本稿では,トランスフォーマーやCNNといったモデルを対象として,DRAMとGPUメモリ間のレイヤ群を移動させる手法である'model spilling'を提案する。
次に,マルチモデルトレーニングワークロードの効率を上げるために,こぼれを利用した新しいテクニックのセットを提案する。
実際のベンチマークワークロードによる実験によると、HYDRAは通常のモデル並列処理よりも7倍高速で、パイプライン並列処理のための最先端の産業ツールよりも50%高速である。
論文 参考訳(メタデータ) (2021-10-16T18:13:57Z) - Efficient Large-Scale Language Model Training on GPU Clusters [19.00915720435389]
大規模な言語モデルは、様々なタスクに最先端の精度をもたらす。
メモリ容量は限られており、大きなモデルを単一のGPUに収めることは不可能である。
これらのモデルのトレーニングに必要な計算操作の数は、非現実的な長いトレーニング時間をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-04-09T16:43:11Z) - ZeRO-Offload: Democratizing Billion-Scale Model Training [16.43347399073034]
ZeRO-Offloadは、データと計算をCPUにオフロードすることで、大規模なモデルトレーニングを可能にする。
単一のGPU上で13億以上のパラメータを持つモデルをトレーニングでき、PyTorchのような一般的なフレームワークと比較して10倍のサイズになる。
論文 参考訳(メタデータ) (2021-01-18T02:11:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。