論文の概要: Intriguing properties of generative classifiers
- arxiv url: http://arxiv.org/abs/2309.16779v2
- Date: Wed, 14 Feb 2024 17:54:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 19:35:41.507427
- Title: Intriguing properties of generative classifiers
- Title(参考訳): 生成型分類器の興味深い性質
- Authors: Priyank Jaini and Kevin Clark and Robert Geirhos
- Abstract要約: 我々は、テキストから画像へのモデルを分類器に変換する生成モデリングの進歩の上に構築する。
Imagenでは99%)、人間レベルのアウト・オブ・ディストリビューションの精度、人間の分類エラーと最先端のアライメントに近い、記録破りの人間のような形状バイアスを示しています。
以上の結果から,人間の物体認識のモデル化のパラダイムは差別的推論であるが,ゼロショット生成モデルは人間の物体認識データを驚くほどよく近似していることが示唆された。
- 参考スコア(独自算出の注目度): 14.57861413242093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: What is the best paradigm to recognize objects -- discriminative inference
(fast but potentially prone to shortcut learning) or using a generative model
(slow but potentially more robust)? We build on recent advances in generative
modeling that turn text-to-image models into classifiers. This allows us to
study their behavior and to compare them against discriminative models and
human psychophysical data. We report four intriguing emergent properties of
generative classifiers: they show a record-breaking human-like shape bias (99%
for Imagen), near human-level out-of-distribution accuracy, state-of-the-art
alignment with human classification errors, and they understand certain
perceptual illusions. Our results indicate that while the current dominant
paradigm for modeling human object recognition is discriminative inference,
zero-shot generative models approximate human object recognition data
surprisingly well.
- Abstract(参考訳): オブジェクトを認識するのに最適なパラダイムは何か -- 差別的推論(速くても、学習をショートカットする傾向がある)、あるいは生成モデル(遅いが、より堅牢な)を使用することは?
我々は、テキストから画像へのモデルを分類器に変換するジェネレーティブモデリングの最近の進歩の上に構築する。
これにより、行動を研究し、識別モデルと人間の心理物理学データと比較することができる。
生成型分類器の創発的特徴として, 記録破りのヒト様形状バイアス(99%が画像n), 人レベルでの分布精度, 最先端のヒト分類誤りの対応, 知覚錯覚の理解の4点を挙げる。
以上の結果から,人間の物体認識のモデル化のパラダイムは差別的推論であるが,ゼロショット生成モデルは人間の物体認識データを驚くほどよく近似していることが示唆された。
関連論文リスト
- How Aligned are Generative Models to Humans in High-Stakes Decision-Making? [10.225573060836478]
大規模生成モデル(LM)は、高い意思決定のためにますます検討されている。
この研究は、リシビズム予測の特定のケースにおいて、そのようなモデルが人間や予測AIモデルとどのように比較されるかを検討する。
論文 参考訳(メタデータ) (2024-10-20T19:00:59Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Diversity vs. Recognizability: Human-like generalization in one-shot
generative models [5.964436882344729]
サンプル認識可能性と多様性の2つの軸に沿った1ショット生成モデルを評価するための新しい枠組みを提案する。
まず、GANのようなモデルとVAEのようなモデルが多様性認識性空間の反対側にあることを示す。
対照的に、非絡み合いは、認識可能性の最大化に使用できるパラボラ曲線に沿ってモデルを輸送する。
論文 参考訳(メタデータ) (2022-05-20T13:17:08Z) - Are Commercial Face Detection Models as Biased as Academic Models? [64.71318433419636]
我々は学術的および商業的な顔検出システムを比較し、特にノイズに対する堅牢性について検討する。
現状の学術的顔検出モデルでは、ノイズの頑健性に人口格差があることがわかった。
私たちは、商用モデルは、常に学術モデルと同じくらいの偏り、あるいはより偏りがある、と結論付けます。
論文 参考訳(メタデータ) (2022-01-25T02:21:42Z) - Exploring Alignment of Representations with Human Perception [47.53970721813083]
モデルによって類似した表現にマッピングされた入力は、人間によっても同様に認識されるべきであることを示す。
我々のアプローチは、モデルが人間の知覚に合致する程度を測ります。
アーキテクチャやトレーニングパラダイム,トレーニング損失,データ拡張といったモデルのさまざまな特性が,人間の知覚に整合した表現の学習において重要な役割を担っていることが分かりました。
論文 参考訳(メタデータ) (2021-11-29T17:26:50Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
画像歪みの存在下での4つの最先端深層顔認識モデルの性能評価を行った。
我々は、画像歪みが、異なるサブグループ間でのモデルの性能ギャップと関係していることを観察した。
論文 参考訳(メタデータ) (2021-08-14T16:49:05Z) - Understanding invariance via feedforward inversion of discriminatively
trained classifiers [30.23199531528357]
過去の研究では、出力ログに余計な視覚的詳細が残っていることが判明した。
極めて高い忠実度を再現するフィードフォワードインバージョンモデルを開発する。
私たちのアプローチはBigGANをベースにしており、1ホットクラスのラベルの代わりにロジットのコンディショニングを行います。
論文 参考訳(メタデータ) (2021-03-15T17:56:06Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Are Visual Explanations Useful? A Case Study in Model-in-the-Loop
Prediction [49.254162397086006]
画像に基づく年齢予測課題における視覚的満足度に基づく説明について検討する。
モデル予測の提示により,人間の精度が向上することが判明した。
しかし、様々な種類の説明は、人間の正確さやモデルの信頼を著しく変えることができない。
論文 参考訳(メタデータ) (2020-07-23T20:39:40Z) - Fairness-Aware Learning with Prejudice Free Representations [2.398608007786179]
本稿では,潜在性識別特徴を効果的に識別し,治療できる新しいアルゴリズムを提案する。
このアプローチは、モデルパフォーマンスを改善するために差別のない機能を集めるのに役立つ。
論文 参考訳(メタデータ) (2020-02-26T10:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。