Algorithmic Recourse in Abnormal Multivariate Time Series
- URL: http://arxiv.org/abs/2309.16896v2
- Date: Fri, 01 Aug 2025 20:55:34 GMT
- Title: Algorithmic Recourse in Abnormal Multivariate Time Series
- Authors: Xiao Han, Lu Zhang, Yongkai Wu, Shuhan Yuan,
- Abstract summary: This paper introduces Recourse in time series Anomaly Detection (RecAD), a framework for addressing anomalies in time series.<n>RecAD predicts recourse actions to restore normal status as counterfactual explanations.<n> Experiments on synthetic and real-world datasets demonstrate its effectiveness.
- Score: 18.076191162702298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic recourse provides actionable recommendations to alter unfavorable predictions of machine learning models, enhancing transparency through counterfactual explanations. While significant progress has been made in algorithmic recourse for static data, such as tabular and image data, limited research explores recourse for multivariate time series, particularly for reversing abnormal time series. This paper introduces Recourse in time series Anomaly Detection (RecAD), a framework for addressing anomalies in multivariate time series using backtracking counterfactual reasoning. By modeling the causes of anomalies as external interventions on exogenous variables, RecAD predicts recourse actions to restore normal status as counterfactual explanations, where the recourse function, responsible for generating actions based on observed data, is trained using an end-to-end approach. Experiments on synthetic and real-world datasets demonstrate its effectiveness.
Related papers
- Calibrated Unsupervised Anomaly Detection in Multivariate Time-series using Reinforcement Learning [0.0]
This paper investigates unsupervised anomaly detection in time-series data using reinforcement learning (RL) in the latent space of an autoencoder.
We use wavelet analysis to enhance anomaly detection, enabling time-series data decomposition into both time and frequency domains.
We calibrate the decision boundary by generating synthetic anomalies and embedding a supervised framework within the model.
arXiv Detail & Related papers (2025-02-05T15:02:40Z) - TSINR: Capturing Temporal Continuity via Implicit Neural Representations for Time Series Anomaly Detection [22.367552254229665]
Time series anomaly detection aims to identify unusual patterns in data or deviations from systems' expected behavior.<n>Reconstruction-based methods are the mainstream in this task, which learn point-wise representation via unsupervised learning.<n>We propose a time series anomaly detection method based on implicit neural representation (INR) reconstruction, named TSINR, to address this challenge.
arXiv Detail & Related papers (2024-11-18T15:19:54Z) - Understanding Time Series Anomaly State Detection through One-Class
Classification [13.822504564241454]
In this article, we try to re-understand and define the time series anomaly detection problem through one-class classification (OCC)
We first use processes and hypothesis testing to strictly define the 'time series anomaly state detection problem', and its corresponding anomalies.
Then, we use the time series classification dataset to construct an artificial dataset corresponding to the problem.
We compile 38 anomaly detection algorithms and correct some of the algorithms to adapt to handle this problem.
arXiv Detail & Related papers (2024-02-03T03:43:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
We present a novel type of anomaly detection, called Precursor-of-Anomaly (PoA) detection.
To solve both problems at the same time, we present a neural controlled differential equation-based neural network and its multi-task learning algorithm.
arXiv Detail & Related papers (2023-06-27T14:10:09Z) - Time series anomaly detection with reconstruction-based state-space
models [10.085100442558828]
We propose a novel unsupervised anomaly detection method for time series data.
A long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the latent space.
Regularization of the latent space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level.
arXiv Detail & Related papers (2023-03-06T17:52:35Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
We propose new constrained pretext tasks to learn object level normality patterns.
Our approach consists in learning a mapping between down-scaled visual queries and their corresponding normal appearance and motion characteristics.
Experiments on several benchmark datasets demonstrate the effectiveness of our approach to localize and track anomalies.
arXiv Detail & Related papers (2022-10-27T19:45:12Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Framing Algorithmic Recourse for Anomaly Detection [18.347886926848563]
We present an approach -- Context preserving Algorithmic Recourse for Anomalies in Tabular data (CARAT)
CARAT uses a transformer based encoder-decoder model to explain an anomaly by finding features with low likelihood.
Semantically coherent counterfactuals are generated by modifying the highlighted features, using the overall context of features in the anomalous instance(s)
arXiv Detail & Related papers (2022-06-29T03:30:51Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Diverse Counterfactual Explanations for Anomaly Detection in Time Series [26.88575131193757]
We propose a model-agnostic algorithm that generates counterfactual ensemble explanations for time series anomaly detection models.
Our method generates a set of diverse counterfactual examples, i.e., multiple versions of the original time series that are not considered anomalous by the detection model.
Our algorithm is applicable to any differentiable anomaly detection model.
arXiv Detail & Related papers (2022-03-21T16:30:34Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Anomaly Rule Detection in Sequence Data [2.3757190901941736]
We present a new anomaly detection framework called DUOS that enables Discovery of Utility-aware Outlier Sequential rules from a set of sequences.
In this work, we incorporate both the anomalousness and utility of a group, and then introduce the concept of utility-aware outlier rule (UOSR)
arXiv Detail & Related papers (2021-11-29T23:52:31Z) - Anomaly Transformer: Time Series Anomaly Detection with Association
Discrepancy [68.86835407617778]
Anomaly Transformer achieves state-of-the-art performance on six unsupervised time series anomaly detection benchmarks.
Anomaly Transformer achieves state-of-the-art performance on six unsupervised time series anomaly detection benchmarks.
arXiv Detail & Related papers (2021-10-06T10:33:55Z) - An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time
Series [7.675917669905486]
This paper presents a systematic and comprehensive evaluation of unsupervised and semi-supervised deep-learning based methods for anomaly detection and diagnosis.
We vary the model and post-processing of model errors, through a grid of 10 models and 4 scoring functions, comparing these variants to state of the art methods.
We find that the existing evaluation metrics either do not take events into account, or cannot distinguish between a good detector and trivial detectors.
arXiv Detail & Related papers (2021-09-23T15:14:24Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - CRATOS: Cognition of Reliable Algorithm for Time-series Optimal Solution [12.906367105870341]
CRATOS is a self-adapt algorithms that extract features from time series, and then cluster series with similar features into one group.
Our methods can significantly reduce the cost of development and maintenance of anomaly detection.
The accuracy of the anomaly detection algorithms in this paper is 85.1%.
arXiv Detail & Related papers (2020-03-03T09:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.