AdaPose: Towards Cross-Site Device-Free Human Pose Estimation with Commodity WiFi
- URL: http://arxiv.org/abs/2309.16964v2
- Date: Mon, 14 Oct 2024 07:17:30 GMT
- Title: AdaPose: Towards Cross-Site Device-Free Human Pose Estimation with Commodity WiFi
- Authors: Yunjiao Zhou, Jianfei Yang, He Huang, Lihua Xie,
- Abstract summary: WiFi-based pose estimation is a technology with great potential for the development of smart homes and metaverse avatar generation.
We propose a domain adaptation algorithm, AdaPose, designed specifically for weakly-supervised WiFi-based pose estimation.
We conduct extensive experiments on domain adaptation in two different scenes using our self-collected pose estimation dataset.
- Score: 34.06785676288187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: WiFi-based pose estimation is a technology with great potential for the development of smart homes and metaverse avatar generation. However, current WiFi-based pose estimation methods are predominantly evaluated under controlled laboratory conditions with sophisticated vision models to acquire accurately labeled data. Furthermore, WiFi CSI is highly sensitive to environmental variables, and direct application of a pre-trained model to a new environment may yield suboptimal results due to domain shift. In this paper, we proposes a domain adaptation algorithm, AdaPose, designed specifically for weakly-supervised WiFi-based pose estimation. The proposed method aims to identify consistent human poses that are highly resistant to environmental dynamics. To achieve this goal, we introduce a Mapping Consistency Loss that aligns the domain discrepancy of source and target domains based on inner consistency between input and output at the mapping level. We conduct extensive experiments on domain adaptation in two different scenes using our self-collected pose estimation dataset containing WiFi CSI frames. The results demonstrate the effectiveness and robustness of AdaPose in eliminating domain shift, thereby facilitating the widespread application of WiFi-based pose estimation in smart cities.
Related papers
- WiFi based Human Fall and Activity Recognition using Transformer based Encoder Decoder and Graph Neural Networks [8.427757893042374]
Transformer based Decoder Network (TED Net) designed for estimating human skeleton poses from WiFi signals.
TED Net integrates convolutional encoders with transformer based attention mechanisms to capture skeleton features from CSI signals.
arXiv Detail & Related papers (2025-04-23T12:22:24Z) - DynOPETs: A Versatile Benchmark for Dynamic Object Pose Estimation and Tracking in Moving Camera Scenarios [20.835782699441797]
This paper presents a novel dataset DynOPETs for object pose estimation and tracking in unconstrained environments.
Our efficient annotation method innovatively integrates pose estimation and pose tracking techniques to generate pseudo-labels.
The resulting dataset offers accurate pose annotations for dynamic objects observed from moving cameras.
arXiv Detail & Related papers (2025-03-25T13:13:44Z) - Towards Robust and Realistic Human Pose Estimation via WiFi Signals [85.60557095666934]
WiFi-based human pose estimation is a challenging task that bridges discrete and subtle WiFi signals to human skeletons.
This paper revisits this problem and reveals two critical yet overlooked issues: 1) cross-domain gap, i.e., due to significant variations between source-target domain pose distributions; and 2) structural fidelity gap, i.e., predicted skeletal poses manifest distorted topology.
This paper fills these gaps by reformulating the task into a novel two-phase framework dubbed DT-Pose: Domain-consistent representation learning and Topology-constrained Pose decoding.
arXiv Detail & Related papers (2025-01-16T09:38:22Z) - Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
Human pose estimation (HPE) has received increasing attention recently due to its wide application in motion analysis, virtual reality, healthcare, etc.
It suffers from the lack of labeled diverse real-world datasets due to the time- and labor-intensive annotation.
We introduce a novel framework that capitalizes on both representation aggregation and segregation for domain adaptive human pose estimation.
arXiv Detail & Related papers (2024-12-29T17:59:45Z) - DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation [10.127634263641877]
Adapting machine learning models to new domains without labeled data is a critical challenge in applications like medical imaging, autonomous driving, and remote sensing.
This task, known as Source-Free Unsupervised Domain Adaptation (SFUDA), involves adapting a pre-trained model to a target domain using only unlabeled target data.
Existing SFUDA methods often rely on single-model architectures, struggling with uncertainty and variability in the target domain.
We propose DRIVE, a novel SFUDA framework leveraging a dual-model architecture. The two models, with identical weights, work in parallel to capture diverse target domain characteristics.
arXiv Detail & Related papers (2024-11-24T20:35:04Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Source-Free and Image-Only Unsupervised Domain Adaptation for Category
Level Object Pose Estimation [18.011044932979143]
3DUDA is a method capable of adapting to a nuisance-ridden target domain without 3D or depth data.
We represent object categories as simple cuboid meshes, and harness a generative model of neural feature activations.
We show that our method simulates fine-tuning on a global pseudo-labeled dataset under mild assumptions.
arXiv Detail & Related papers (2024-01-19T17:48:05Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Out-of-Domain Robustness via Targeted Augmentations [90.94290420322457]
We study principles for designing data augmentations for out-of-domain generalization.
Motivated by theoretical analysis on a linear setting, we propose targeted augmentations.
We show that targeted augmentations set new states-of-the-art for OOD performance by 3.2-15.2 percentage points.
arXiv Detail & Related papers (2023-02-23T08:59:56Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - OTAdapt: Optimal Transport-based Approach For Unsupervised Domain
Adaptation [10.485172090696642]
This paper presents a novel approach to unsupervised domain adaptations based on the optimal transport-based distance.
Our approach allows aligning target and source domains without the requirement of meaningful metrics across domains.
The proposed method is evaluated on different datasets in various problems.
arXiv Detail & Related papers (2022-05-22T04:25:24Z) - Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose
Estimation [63.199549837604444]
3D human pose estimation approaches leverage different forms of strong (2D/3D pose) or weak (multi-view or depth) paired supervision.
We cast 3D pose learning as a self-supervised adaptation problem that aims to transfer the task knowledge from a labeled source domain to a completely unpaired target.
We evaluate different self-adaptation settings and demonstrate state-of-the-art 3D human pose estimation performance on standard benchmarks.
arXiv Detail & Related papers (2022-04-05T03:52:57Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
We propose an unsupervised domain adaptation framework to bridge the domain gap between source and target domains.
We use a data augmentation scheme that simulates weather distortions to add domain confusion and prevent overfitting on the source data.
Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap.
arXiv Detail & Related papers (2022-03-07T18:10:40Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.