Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Sensor Fusion
- URL: http://arxiv.org/abs/2411.06917v2
- Date: Wed, 06 Aug 2025 13:15:20 GMT
- Title: Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Sensor Fusion
- Authors: Keivan Faghih Niresi, Ismail Nejjar, Olga Fink,
- Abstract summary: Low-cost, distributed sensor networks in environmental and biomedical domains have enabled continuous, large-scale health monitoring.<n>These systems often face challenges related to degraded data quality caused by sensor drift, noise, and insufficient calibration.<n>Traditional machine learning methods for sensor fusion and calibration rely on extensive feature engineering.<n>We propose a novel unsupervised domain adaptation (UDA) method tailored for regression tasks.
- Score: 6.963971634605796
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing deployment of low-cost, distributed sensor networks in environmental and biomedical domains has enabled continuous, large-scale health monitoring. However, these systems often face challenges related to degraded data quality caused by sensor drift, noise, and insufficient calibration -- factors that limit their reliability in real-world applications. Traditional machine learning methods for sensor fusion and calibration rely on extensive feature engineering and struggle to capture spatial-temporal dependencies or adapt to distribution shifts across varying deployment conditions. To address these challenges, we propose a novel unsupervised domain adaptation (UDA) method tailored for regression tasks. Our proposed method integrates effectively with Spatial-Temporal Graph Neural Networks and leverages the alignment of perturbed inverse Gram matrices between source and target domains, drawing inspiration from Tikhonov regularization. This approach enables scalable and efficient domain adaptation without requiring labeled data in the target domain. We validate our novel method on real-world datasets from two distinct applications: air quality monitoring and EEG signal reconstruction. Our method achieves state-of-the-art performance which paves the way for more robust and transferable sensor fusion models in both environmental and physiological contexts. Our code is available at https://github.com/EPFL-IMOS/TikUDA.
Related papers
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
We introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds.<n>Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures.<n>We propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training.
arXiv Detail & Related papers (2025-06-26T11:53:59Z) - Efficient Test-time Adaptive Object Detection via Sensitivity-Guided Pruning [73.40364018029673]
Continual test-time adaptive object detection (CTTA-OD) aims to online adapt a source pre-trained detector to ever-changing environments.<n>Our motivation stems from the observation that not all learned source features are beneficial.<n>Our method achieves superior adaptation performance while reducing computational overhead by 12% in FLOPs.
arXiv Detail & Related papers (2025-06-03T05:27:56Z) - Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
Urban forests play a key role in enhancing environmental quality and supporting biodiversity in cities.<n> accurately detecting trees is challenging due to complex landscapes and the variability in image resolution caused by different satellite sensors or UAV flight altitudes.<n>We propose a novel pipeline that integrates domain adaptation with GANs and Diffusion models to enhance the quality of low-resolution aerial images.
arXiv Detail & Related papers (2025-05-21T03:57:10Z) - Efficient and Robust Multidimensional Attention in Remote Physiological Sensing through Target Signal Constrained Factorization [7.947387272047604]
We present MMRPhys, an efficient dual-branch 3D-CNN architecture designed for simultaneous estimation of photoplethysmography (rRSP) and respiratory (rRSP) signals from multimodal video inputs.<n>We demonstrate that MMRPhys with TSFM significantly outperforms state-of-the-art methods in generalization across domain shifts for rRSP estimation, while maintaining a minimal inference latency suitable for real-time applications.
arXiv Detail & Related papers (2025-05-11T15:20:45Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
Single Domain Generalization aims to train models with consistent performance across diverse scenarios using data from a single source.<n>We propose Discriminative Domain Reassembly and Soft-Fusion (DRSF), a training framework leveraging synthetic data to improve model generalization.
arXiv Detail & Related papers (2025-03-17T18:08:03Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.<n>Virtual sensing addresses limitations by leveraging readily available sensor data and system knowledge.<n>We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
We introduce a novel diffusion-based box refinement approach to ensure robust 3D object detection and localization.
We evaluate this approach under various domain adaptation settings, and our results reveal significant improvements across different datasets.
arXiv Detail & Related papers (2024-05-25T03:14:55Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
We propose a novel framework for sensor fault detection using masked models and self-supervised learning.
We validate our proposed technique on both a public dataset and a real-world dataset from offshore GE wind turbines.
Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in real-time.
arXiv Detail & Related papers (2024-03-24T13:44:57Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
This paper investigates the sensor placement problem for networks.
We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally.
Next, we propose an efficient and adaptive greedy for sensor placement that scales to large networks.
arXiv Detail & Related papers (2023-12-12T01:08:08Z) - Spatial-Temporal Graph Attention Fuser for Calibration in IoT Air
Pollution Monitoring Systems [8.997596859735516]
We propose a novel approach to enhance the calibration process by fusing data from sensor arrays.
We demonstrate the effectiveness of our approach in significantly improving the calibration accuracy of sensors in IoT air pollution monitoring platforms.
arXiv Detail & Related papers (2023-09-08T12:04:47Z) - Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces [3.729242965449096]
The sensor placement problem is a common problem that arises when monitoring correlated phenomena.
We present a novel formulation to the SP problem based on variational approximation that can be optimized using gradient descent.
arXiv Detail & Related papers (2023-02-28T19:10:12Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Sensor Control for Information Gain in Dynamic, Sparse and Partially
Observed Environments [1.5402666674186938]
We present an approach for autonomous sensor control for information gathering under partially observable, dynamic and sparsely sampled environments.
We extend the Deep Anticipatory Network (DAN) Reinforcement Learning framework by (1) improving exploration in sparse, non-stationary environments using a novel information gain reward.
We also extend this problem to situations in which sampling from the intended RF spectrum/field is limited and propose a model-based version of the original RL algorithm that fine-tunes the controller via a model that is iteratively improved from the limited field sampling.
arXiv Detail & Related papers (2022-11-03T00:03:14Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
In this paper, we analyze data from sensors deployed in an agricultural farm with data from seven different kinds of sensors, and from an advanced manufacturing testbed with vibration sensors.
We show how in these two application domains, predictive failure classification can be achieved, thus paving the way for predictive maintenance.
arXiv Detail & Related papers (2021-02-11T02:37:27Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
We propose a scheduling mechanism capable of taking advantage of correlated information.
The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates.
We show that our solution can significantly extend the sensors' lifetime.
arXiv Detail & Related papers (2020-11-19T09:53:27Z) - Learning Camera Miscalibration Detection [83.38916296044394]
This paper focuses on a data-driven approach to learn the detection of miscalibration in vision sensors, specifically RGB cameras.
Our contributions include a proposed miscalibration metric for RGB cameras and a novel semi-synthetic dataset generation pipeline based on this metric.
By training a deep convolutional neural network, we demonstrate the effectiveness of our pipeline to identify whether a recalibration of the camera's intrinsic parameters is required or not.
arXiv Detail & Related papers (2020-05-24T10:32:49Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.