論文の概要: Mostree : Malicious Secure Private Decision Tree Evaluation with Sublinear Communication
- arxiv url: http://arxiv.org/abs/2309.17124v1
- Date: Fri, 29 Sep 2023 10:39:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 14:15:19.822098
- Title: Mostree : Malicious Secure Private Decision Tree Evaluation with Sublinear Communication
- Title(参考訳): Mostree : 準線形通信による安全性の高い個人決定木の評価
- Authors: Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien Chang, Giovanni Russello,
- Abstract要約: Mostreeは、悪意のある当事者の存在下でセキュアなPDTEプロトコルである。
MostreeはOSプロトコルとツリーエンコーディングとサードパーティのセキュアな計算を組み合わせる。
私たちはMostreeを実装し、最先端技術と比較します。
- 参考スコア(独自算出の注目度): 21.663065637676326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A private decision tree evaluation (PDTE) protocol allows a feature vector owner (FO) to classify its data using a tree model from a model owner (MO) and only reveals an inference result to the FO. This paper proposes Mostree, a PDTE protocol secure in the presence of malicious parties with sublinear communication. We design Mostree in the three-party honest-majority setting, where an (untrusted) computing party (CP) assists the FO and MO in the secure computation. We propose two low-communication oblivious selection (OS) protocols by exploiting nice properties of three-party replicated secret sharing (RSS) and distributed point function. Mostree combines OS protocols with a tree encoding method and three-party secure computation to achieve sublinear communication. We observe that most of the protocol components already maintain privacy even in the presence of a malicious adversary, and what remains to achieve is correctness. To ensure correctness, we propose a set of lightweight consistency checks and seamlessly integrate them into Mostree. As a result, Mostree achieves sublinear communication and malicious security simultaneously. We implement Mostree and compare it with the state-of-the-art. Experimental results demonstrate that Mostree is efficient and comparable to semi-honest PDTE schemes with sublinear communication. For instance, when evaluated on the MNIST dataset in a LAN setting, Mostree achieves an evaluation using approximately 768 ms with communication of around 168 KB.
- Abstract(参考訳): プライベート決定ツリー評価(PDTE)プロトコルにより、機能ベクトルオーナ(FO)は、モデルオーナ(MO)からツリーモデルを使用してデータを分類し、FOに推論結果のみを公開する。
本稿では,サブリニア通信を伴う悪意ある当事者の存在下でのPDTEプロトコルであるMostreeを提案する。
我々はMostreeを、(信頼できない)コンピューティングパーティ(CP)がFOとMOをセキュアな計算で支援する3つのパーティの誠実なマジョリティ設定で設計する。
本稿では,3次元複製秘密共有(RSS)と分散点関数の優れた特性を活かして,2つの低コミュニケーション・オブリベージ・セレクション(OS)プロトコルを提案する。
MostreeはOSプロトコルとツリーエンコーディングとサードパーティのセキュアな計算を組み合わせることで、サブ線形通信を実現する。
悪意のある相手の存在下でも,プロトコルコンポーネントのほとんどがすでにプライバシを維持しており,その正しさを達成しなければならない。
正確性を確保するために、軽量な一貫性チェックセットを提案し、それらをMostreeにシームレスに統合する。
その結果、Mostreeはサブリニア通信と悪意のあるセキュリティを同時に達成した。
私たちはMostreeを実装し、最先端技術と比較します。
実験により,Mostreeは効率が高く,準線形通信を伴う半正直なPDTEスキームに匹敵することを示した。
例えば、LAN設定でMNISTデータセットで評価すると、Mostreeは約768ms、通信量は約168KBである。
関連論文リスト
- Bicoptor 2.0: Addressing Challenges in Probabilistic Truncation for Enhanced Privacy-Preserving Machine Learning [6.733212399517445]
本稿では,既存のPPML作業における確率的トランケーションプロトコルの問題の解析と解決策の提案に焦点をあてる。
精度の面では、既存の作品のいくつかで推奨される精度の選択が誤りであることを明らかにする。
本稿では,今後の課題に対する解法と精度選択ガイドラインを提案する。
論文 参考訳(メタデータ) (2023-09-10T01:43:40Z) - Noisy-Correspondence Learning for Text-to-Image Person Re-identification [50.07634676709067]
本稿では,雑音対応においても頑健な視覚関係を学習するための新しいロバスト二重埋め込み法(RDE)を提案する。
提案手法は,3つのデータセット上での合成ノイズ対応と非合成ノイズ対応を両立させる。
論文 参考訳(メタデータ) (2023-08-19T05:34:13Z) - ByzSecAgg: A Byzantine-Resistant Secure Aggregation Scheme for Federated
Learning Based on Coded Computing and Vector Commitment [90.60126724503662]
ByzSecAggは、フェデレートラーニングのための効率的なセキュアアグリゲーションスキームである。
ByzSecAggは、ビザンツの攻撃やプライバシーの漏洩から保護されている。
論文 参考訳(メタデータ) (2023-02-20T11:15:18Z) - QuTE: decentralized multiple testing on sensor networks with false
discovery rate control [130.7122910646076]
本稿では、偽発見率(FDR)の証明可能な保証を備えたグラフ上での分散多重仮説検定法を設計する。
異なるエージェントが無向グラフのノードに存在し、各エージェントはそのノードに局所的な1つ以上の仮説に対応するp値を持つ。
各エージェントは、グラフ全体の大域的FDRが予め定義されたレベルで制御されなければならないという共同目的のもと、隣人とのみ通信することで、それぞれのローカル仮説の1つ以上の拒絶を個別に決めなければならない。
論文 参考訳(メタデータ) (2022-10-09T19:48:39Z) - Bicoptor: Two-round Secure Three-party Non-linear Computation without Preprocessing for Privacy-preserving Machine Learning [5.774912335678817]
本研究は,非線形関数評価の効率を向上するセキュアな3要素プロトコルであるBicoptorのファミリーを導入する。
我々の3PC符号決定プロトコルは、通信ラウンドを2回しか必要とせず、前処理を一切含まない。
パブリッククラウド上での3次元LANネットワーク上でのBicoptorの評価を行い,370,000 DRELU/ReLUまたは41,000 Maxpoolの動作を毎秒達成した。
論文 参考訳(メタデータ) (2022-10-05T02:33:53Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
ほぼ最適な統計率を持つビザンチン・ロバスト・フェデレーション学習プロトコルを提案する。
競合プロトコルに対してベンチマークを行い、提案プロトコルの実証的な優位性を示す。
我々のバケットプロトコルは、プライバシー保証手順と自然に組み合わせて、半正直なサーバに対するセキュリティを導入することができる。
論文 参考訳(メタデータ) (2022-05-24T04:03:07Z) - BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine
Learning [0.0]
我々は、N-party Federated Learningのための最初のブロックチェーンベースのフレームワークBEASを紹介する。
グラデーションプルーニングを使用したトレーニングデータの厳格なプライバシー保証を提供する。
異常検出プロトコルは、データ汚染攻撃のリスクを最小限に抑えるために使用される。
また、異種学習環境における早期収束を防止するための新しいプロトコルも定義する。
論文 参考訳(メタデータ) (2022-02-06T17:11:14Z) - Mitigating Leakage in Federated Learning with Trusted Hardware [0.0]
連合学習では、複数のパーティが協力して、それぞれのデータセット上でグローバルモデルをトレーニングします。
不正に行われた場合、一部の情報はまだ関係者間でリークされる可能性がある。
信頼性の高い実行環境に依存した2つのセキュアバージョンを提案する。
論文 参考訳(メタデータ) (2020-11-10T07:22:51Z) - An Accurate, Scalable and Verifiable Protocol for Federated
Differentially Private Averaging [0.0]
我々は、参加者に提供されるプライバシー保証と、悪意ある当事者の存在下での計算の正しさに関する課題に取り組む。
最初のコントリビューションはスケーラブルなプロトコルで、参加者はネットワークグラフのエッジに沿って関連するガウスノイズを交換する。
第2のコントリビューションでは,プロトコルの効率性とプライバシ保証を損なうことなく,計算の正確性を証明することができる。
論文 参考訳(メタデータ) (2020-06-12T14:21:10Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
フェデレートラーニング(FL)は、データを有用なモデルにトレーニングしながら、モバイル端末(MT)からプライベートデータを保存することができる。
情報理論の観点からは、MTがアップロードした共有モデルから、好奇心の強いサーバがプライベートな情報を推測することが可能である。
サーバにアップロードする前に、共有モデルに人工ノイズを加えることで、ユーザレベルの差分プライバシー(UDP)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-29T10:13:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。