論文の概要: Knowledge Graphs for the Life Sciences: Recent Developments, Challenges
and Opportunities
- arxiv url: http://arxiv.org/abs/2309.17255v3
- Date: Mon, 27 Nov 2023 08:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 14:40:52.351102
- Title: Knowledge Graphs for the Life Sciences: Recent Developments, Challenges
and Opportunities
- Title(参考訳): 生命科学のための知識グラフ--最近の発展、挑戦、機会
- Authors: Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jim\'enez-Ruiz,
Vanessa L\'opez, Pierre Monnin, Catia Pesquita, Petr \v{S}koda, Valentina
Tamma
- Abstract要約: 生命科学におけるグラフ技術の利用の進展と進歩について論じる。
我々は、知識グラフ(KG)の構築と管理、新しい知識の発見におけるKGとその関連技術の使用、説明を支援する人工知能アプリケーションにおけるKGの使用の3つの幅広いトピックに焦点を当てる。
- 参考スコア(独自算出の注目度): 11.35513523308132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The term life sciences refers to the disciplines that study living organisms
and life processes, and include chemistry, biology, medicine, and a range of
other related disciplines. Research efforts in life sciences are heavily
data-driven, as they produce and consume vast amounts of scientific data, much
of which is intrinsically relational and graph-structured.
The volume of data and the complexity of scientific concepts and relations
referred to therein promote the application of advanced knowledge-driven
technologies for managing and interpreting data, with the ultimate aim to
advance scientific discovery.
In this survey and position paper, we discuss recent developments and
advances in the use of graph-based technologies in life sciences and set out a
vision for how these technologies will impact these fields into the future. We
focus on three broad topics: the construction and management of Knowledge
Graphs (KGs), the use of KGs and associated technologies in the discovery of
new knowledge, and the use of KGs in artificial intelligence applications to
support explanations (explainable AI). We select a few exemplary use cases for
each topic, discuss the challenges and open research questions within these
topics, and conclude with a perspective and outlook that summarizes the
overarching challenges and their potential solutions as a guide for future
research.
- Abstract(参考訳): 生命科学という用語は、生物と生命の過程を研究する分野であり、化学、生物学、医学、その他の関連する分野を含む。
生命科学の研究は、膨大な量の科学データを生産し消費するため、データ駆動であり、その多くが本質的に関係性があり、グラフ構造である。
データ量と科学的な概念と関係の複雑さは、データの管理と解釈に先進的な知識駆動技術の適用を促進し、科学的な発見を促進するための究極の目的である。
本稿では,生命科学におけるグラフ技術の利用の最近の進展と進歩について論じ,これらの技術が将来,これらの分野にどのように影響するかを展望する。
我々は、知識グラフ(KG)の構築と管理、新しい知識の発見におけるKGとその関連技術の使用、説明(説明可能なAI)をサポートする人工知能アプリケーションにおけるKGの使用の3つの幅広いトピックに焦点を当てる。
各トピックの例を挙げるユースケースをいくつか選択し、これらのトピックにおける課題とオープンリサーチの質問について議論し、今後の研究の指針として、包括的な課題とその潜在的な解決策をまとめる視点と展望をまとめます。
関連論文リスト
- Academic competitions [61.592427413342975]
この章では、機械学習とその関連分野の文脈における学術的課題について調査する。
ここ数年で最も影響力のあるコンペをレビューし、知識領域における課題を分析します。
科学的な課題,その目標,主要な成果,今後の数年間の期待を概観する。
論文 参考訳(メタデータ) (2023-12-01T01:01:04Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Discovering Causal Relations and Equations from Data [23.802778299505288]
本稿では、物理学の幅広い分野における因果関係と方程式発見に関する概念、方法、および関連する研究について概説する。
我々は、観察因果関係と方程式発見のための分類法を提供し、接続を指摘し、ケーススタディの完全なセットを示します。
興奮する時間は、複雑なシステムに対する理解を改善するための多くの課題と機会に先立ちます。
論文 参考訳(メタデータ) (2023-05-21T19:22:50Z) - How Data Scientists Review the Scholarly Literature [4.406926847270567]
データサイエンティストの文献レビューの実践について検討する。
データサイエンスは、論文の指数的な増加を示す分野である。
これらの科学者が直面する具体的な実践や課題について、事前の研究は行われていない。
論文 参考訳(メタデータ) (2023-01-10T03:53:05Z) - Artificial Intelligence and Natural Language Processing and
Understanding in Space: Four ESA Case Studies [48.53582660901672]
本稿では,空間文書から情報を自動的に抽出するための,人工知能と自然言語処理と理解に基づく方法論的枠組みを提案する。
ケーススタディはミッションデザイン、品質保証、長期データ保存、オープンスペースイノベーションプラットフォームなど、ESAのさまざまな機能領域で実装されている。
論文 参考訳(メタデータ) (2022-10-07T15:50:17Z) - Coordinated Science Laboratory 70th Anniversary Symposium: The Future of
Computing [80.72844751804166]
2021年、コーディネート・サイエンス研究所(CSL)は70周年を記念して、Future of Computing Symposiumを開催した。
シンポジウムで提案された主要な技術的ポイント、洞察、方向性を要約する。
参加者は、新しいコンピューティングパラダイム、技術、アルゴリズム、行動、そして将来予想される研究課題に関するトピックについて議論した。
論文 参考訳(メタデータ) (2022-10-04T17:32:27Z) - Knowledge Graph and Accurate Portrait Construction of Scientific and
Technological Academic Conferences [14.130765322587264]
近年、科学技術の継続的な進歩に伴い、科学研究の成果は日に日に増えている。
科学技術学術会議の招集は、多くの学術論文、研究者、研究機関、その他のデータをもたらす。
深層学習技術を用いて、科学および技術学術会議のデータの中核となる情報をマイニングすることは、非常に重要である。
論文 参考訳(メタデータ) (2022-04-11T06:15:45Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
本稿では、自然言語処理と機械学習を利用して研究論文から実体や関係を抽出する新しいアーキテクチャを提案する。
本研究では,現在最先端の自然言語処理ツールとテキストマイニングツールを用いて,知識抽出の課題に取り組む。
セマンティックWebドメイン内の論文26,827件から抽出した109,105件のトリプルを含む科学知識グラフを作成した。
論文 参考訳(メタデータ) (2020-10-28T08:31:40Z) - Data Science: Challenges and Directions [42.98602883069444]
データサイエンスのタイトルを含む何百もの文献をレビューする。
議論の大部分は、統計、データマイニング、機械学習、ビッグデータ、あるいは広範なデータ分析に関するものだと考えています。
我々は、複雑なシステムとしてのデータサイエンス問題の性質にインスパイアされた研究とイノベーションの課題に焦点を当てる。
論文 参考訳(メタデータ) (2020-06-28T01:49:00Z) - A Survey on Knowledge Graphs: Representation, Acquisition and
Applications [89.78089494738002]
我々は,1)知識グラフ表現学習,2)知識獲得と完成,3)時間的知識グラフ,および4)知識認識アプリケーションに関する研究トピックをレビューする。
知識獲得、特に知識グラフの完成、埋め込み方法、経路推論、論理ルール推論について概観する。
メタラーニング、コモンセンス推論、時間的知識グラフなど、いくつかの新しいトピックを探求する。
論文 参考訳(メタデータ) (2020-02-02T13:17:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。