Leave-one-out Distinguishability in Machine Learning
- URL: http://arxiv.org/abs/2309.17310v4
- Date: Wed, 17 Apr 2024 06:17:59 GMT
- Title: Leave-one-out Distinguishability in Machine Learning
- Authors: Jiayuan Ye, Anastasia Borovykh, Soufiane Hayou, Reza Shokri,
- Abstract summary: We introduce an analytical framework to quantify the changes in a machine learning algorithm's output distribution following the inclusion of a few data points in its training set.
This is key to measuring data **memorization** and information **leakage** as well as the **influence** of training data points in machine learning.
- Score: 23.475469946428717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an analytical framework to quantify the changes in a machine learning algorithm's output distribution following the inclusion of a few data points in its training set, a notion we define as leave-one-out distinguishability (LOOD). This is key to measuring data **memorization** and information **leakage** as well as the **influence** of training data points in machine learning. We illustrate how our method broadens and refines existing empirical measures of memorization and privacy risks associated with training data. We use Gaussian processes to model the randomness of machine learning algorithms, and validate LOOD with extensive empirical analysis of leakage using membership inference attacks. Our analytical framework enables us to investigate the causes of leakage and where the leakage is high. For example, we analyze the influence of activation functions, on data memorization. Additionally, our method allows us to identify queries that disclose the most information about the training data in the leave-one-out setting. We illustrate how optimal queries can be used for accurate **reconstruction** of training data.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
This thesis explores several data sensitivities of modern machine learning.
We first discuss how to prevent ML from codifying prior human discrimination measured in the training data.
We then discuss the problem of learning from data containing spurious features, which provide predictive fidelity during training but are unreliable upon deployment.
arXiv Detail & Related papers (2023-12-19T20:49:28Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
We show that passive data can still be used to learn features that accelerate downstream RL.
Our approach learns from passive data by modeling intentions.
Our experiments demonstrate the ability to learn from many forms of passive data, including cross-embodiment video data and YouTube videos.
arXiv Detail & Related papers (2023-04-10T17:59:05Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
We reconstruct the training samples from a single gradient query at a randomly chosen parameter value.
As a provable attack that reveals sensitive training data, our findings suggest potential severe threats to privacy.
arXiv Detail & Related papers (2022-12-07T15:32:22Z) - Forget Unlearning: Towards True Data-Deletion in Machine Learning [18.656957502454592]
We show that unlearning is not equivalent to data deletion and does not guarantee the "right to be forgotten"
We propose an accurate, computationally efficient, and secure data-deletion machine learning algorithm in the online setting.
arXiv Detail & Related papers (2022-10-17T10:06:11Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
Membership inference attacks are used to quantify the private information that a model leaks about the individual data points in its training set.
We derive new attack algorithms that can achieve a high AUC score while also highlighting the different factors that affect their performance.
Our algorithms capture a very precise approximation of privacy loss in models, and can be used as a tool to perform an accurate and informed estimation of privacy risk in machine learning models.
arXiv Detail & Related papers (2021-11-18T13:31:22Z) - Bounding Information Leakage in Machine Learning [26.64770573405079]
This paper investigates fundamental bounds on information leakage.
We identify and bound the success rate of the worst-case membership inference attack.
We derive bounds on the mutual information between the sensitive attributes and model parameters.
arXiv Detail & Related papers (2021-05-09T08:49:14Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck.
By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning.
arXiv Detail & Related papers (2020-09-07T16:47:30Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - Modelling and Quantifying Membership Information Leakage in Machine
Learning [14.095523601311374]
We show that complex models, such as deep neural networks, are more susceptible to membership inference attacks.
We show that the amount of the membership information leakage is reduced by $mathcalO(log1/2(delta-1)epsilon-1)$ when using Gaussian $(epsilon,delta)$-differentially-private additive noises.
arXiv Detail & Related papers (2020-01-29T00:42:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.