Efficient Anatomical Labeling of Pulmonary Tree Structures via Deep Point-Graph Representation-based Implicit Fields
- URL: http://arxiv.org/abs/2309.17329v3
- Date: Thu, 17 Oct 2024 19:23:45 GMT
- Title: Efficient Anatomical Labeling of Pulmonary Tree Structures via Deep Point-Graph Representation-based Implicit Fields
- Authors: Kangxian Xie, Jiancheng Yang, Donglai Wei, Ziqiao Weng, Pascal Fua,
- Abstract summary: Pulmonary diseases rank prominently among the principal causes of death worldwide.
Traditional approaches using high-resolution image stacks and standard CNNs on dense voxel grids face challenges in computational efficiency, limited resolution, local context, and inadequate preservation of shape topology.
Our method addresses these issues by shifting from dense voxel to sparse point representation, offering better memory efficiency and global context utilization.
- Score: 45.16492100245491
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pulmonary diseases rank prominently among the principal causes of death worldwide. Curing them will require, among other things, a better understanding of the complex 3D tree-shaped structures within the pulmonary system, such as airways, arteries, and veins. Traditional approaches using high-resolution image stacks and standard CNNs on dense voxel grids face challenges in computational efficiency, limited resolution, local context, and inadequate preservation of shape topology. Our method addresses these issues by shifting from dense voxel to sparse point representation, offering better memory efficiency and global context utilization. However, the inherent sparsity in point representation can lead to a loss of crucial connectivity in tree-shaped structures. To mitigate this, we introduce graph learning on skeletonized structures, incorporating differentiable feature fusion for improved topology and long-distance context capture. Furthermore, we employ an implicit function for efficient conversion of sparse representations into dense reconstructions end-to-end. The proposed method not only delivers state-of-the-art performance in labeling accuracy, both overall and at key locations, but also enables efficient inference and the generation of closed surface shapes. Addressing data scarcity in this field, we have also curated a comprehensive dataset to validate our approach. Data and code are available at \url{https://github.com/M3DV/pulmonary-tree-labeling}.
Related papers
- ContextLoss: Context Information for Topology-Preserving Segmentation [2.2742404315918927]
We propose the novel loss function ContextLoss (CLoss) that improves topological correctness by considering topological errors with their whole context in the critical pixel mask.<n>We benchmark our proposed CLoss on three public datasets (2D & 3D) and our own 3D nano-imaging dataset of bone cement lines.
arXiv Detail & Related papers (2025-06-10T19:09:52Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - Learning to Approximate Adaptive Kernel Convolution on Graphs [4.434835769977399]
We propose a diffusion learning framework, where the range of feature aggregation is controlled by the scale of a diffusion kernel.
Our model is tested on various standard for node-wise classification for the state-of-the-art datasets performance.
It is also validated on a real-world brain network data for graph classifications to demonstrate its practicality for Alzheimer classification.
arXiv Detail & Related papers (2024-01-22T10:57:11Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings [12.79344668998054]
We propose SwIPE (Segmentation with Implicit Patch Embeddings) to enable accurate local boundary delineation and global shape coherence.
We show that SwIPE significantly improves over recent implicit approaches and outperforms state-of-the-art discrete methods with over 10x fewer parameters.
arXiv Detail & Related papers (2023-07-23T20:55:11Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Sign-Agnostic CONet: Learning Implicit Surface Reconstructions by
Sign-Agnostic Optimization of Convolutional Occupancy Networks [39.65056638604885]
We learn implicit surface reconstruction by sign-agnostic optimization of convolutional occupancy networks.
We show this goal can be effectively achieved by a simple yet effective design.
arXiv Detail & Related papers (2021-05-08T03:35:32Z) - Self-Learning with Rectification Strategy for Human Parsing [73.06197841003048]
We propose a trainable graph reasoning method to correct two typical errors in the pseudo-labels.
The reconstructed features have a stronger ability to represent the topology structure of the human body.
Our method outperforms other state-of-the-art methods in supervised human parsing tasks.
arXiv Detail & Related papers (2020-04-17T03:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.