Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation
- URL: http://arxiv.org/abs/2411.03228v1
- Date: Tue, 05 Nov 2024 16:20:14 GMT
- Title: Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation
- Authors: Laurin Lux, Alexander H. Berger, Alexander Weers, Nico Stucki, Daniel Rueckert, Ulrich Bauer, Johannes C. Paetzold,
- Abstract summary: Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
- Score: 78.54656076915565
- License:
- Abstract: Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware methods often lack robust topological guarantees, are limited to specific use cases, or impose high computational costs. In this work, we propose a novel, graph-based framework for topologically accurate image segmentation that is both computationally efficient and generally applicable. Our method constructs a component graph that fully encodes the topological information of both the prediction and ground truth, allowing us to efficiently identify topologically critical regions and aggregate a loss based on local neighborhood information. Furthermore, we introduce a strict topological metric capturing the homotopy equivalence between the union and intersection of prediction-label pairs. We formally prove the topological guarantees of our approach and empirically validate its effectiveness on binary and multi-class datasets. Our loss demonstrates state-of-the-art performance with up to fivefold faster loss computation compared to persistent homology methods.
Related papers
- Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods [7.646983689651424]
Topological consistency plays a crucial role in the task of boundary segmentation for reticular images.
We propose the Skea-Topo Aware loss, which is a novel loss function that takes into account the shape of each object and topological significance of the pixels.
Experiments prove that our method improves topological consistency by up to 7 points in VI compared to 13 state-of-art methods.
arXiv Detail & Related papers (2024-04-29T09:27:31Z) - Graph Vertex Embeddings: Distance, Regularization and Community Detection [0.0]
Graph embeddings have emerged as a powerful tool for representing complex network structures in a low-dimensional space.
We present a family of flexible distance functions that faithfully capture the topological distance between different vertices.
We evaluate the effectiveness of our proposed embedding constructions by performing community detection on a host of benchmark datasets.
arXiv Detail & Related papers (2024-04-09T09:03:53Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - BuyTheDips: PathLoss for improved topology-preserving deep
learning-based image segmentation [1.8899300124593648]
We propose a new deep image segmentation method which relies on a new leakage loss: the Pathloss.
Our method outperforms state-of-the-art topology-aware methods on two representative datasets of different natures.
arXiv Detail & Related papers (2022-07-23T07:19:30Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Image Segmentation with Homotopy Warping [10.093435601073484]
topological correctness is crucial for the segmentation of images with fine-scale structures.
By leveraging the theory of digital topology, we identify locations in an image that are critical for topology.
We propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy.
arXiv Detail & Related papers (2021-12-15T00:33:15Z) - Topology-Aware Segmentation Using Discrete Morse Theory [38.65353702366932]
We propose a new approach to train deep image segmentation networks for better topological accuracy.
We identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy.
On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.
arXiv Detail & Related papers (2021-03-18T02:47:21Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
We propose a method to automatically find a compact and problem-specific network for graph convolutional networks in a progressive manner.
Experimental results on two datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance.
arXiv Detail & Related papers (2020-11-11T09:57:49Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
We present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical landmark detection.
The proposed method constructs graph signals leveraging both local image features and global shape features.
Experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis)
arXiv Detail & Related papers (2020-04-17T11:55:03Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.