Pairing from repulsion in a two-dimensional Fermi gas with soft-core interactions
- URL: http://arxiv.org/abs/2309.17362v2
- Date: Sat, 23 Mar 2024 15:00:35 GMT
- Title: Pairing from repulsion in a two-dimensional Fermi gas with soft-core interactions
- Authors: Ahmet Keles, Xiaopeng Li, Erhai Zhao,
- Abstract summary: We investigate a model many-body system of Fermi gas in two dimensions, where the bare two-body interaction is repulsive and takes the form of a soft-core disk potential.
We obtain the zero temperature phase diagram of this model by numerical functional renormalization group (FRG)
We trace the stabilization and enhancement of $f$- and $h$-wave pairing back to the momentum dependence of the bare interaction.
- Score: 3.4186533395054566
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We investigate a model many-body system of spinless Fermi gas in two dimensions, where the bare two-body interaction is repulsive and takes the form of a soft-core disk potential. We obtain the zero temperature phase diagram of this model by numerical functional renormalization group (FRG), which retains the effective interaction vertices in all channels to provide a detailed picture of how Cooper pairing emerges under the renormalization flow. The repulsion drives the system to a series of superfluid states with higher angular momentum paring, for example in the $f$- and $h$-wave channels instead of the $p$-wave channel. This is in sharp contrast to the original Kohn-Luttinger mechanism where pairing of very large angular momenta and exponentially small transition temperature was predicted. We trace the stabilization and enhancement of $f$- and $h$-wave pairing back to the momentum dependence of the bare interaction. A perturbative calculation is carried out to show that while the second order Kohn-Luttinger diagrams provide a qualitative understanding of the onsets of the various superfluid phases, they are unable to accurately capture the phase boundaries predicted by FRG. Our findings suggest that tuning the shape of the interaction potential offers a promising route to achieve stronger ``pairing glue" and to realize nontrivial superfluid phases in repulsive Fermi gases beyond the scope of the original Kohn-Luttinger analysis.
Related papers
- Feshbach hypothesis of high-Tc superconductivity in cuprates [0.0]
We present a Feshbach perspective on the origin of strong pairing in Fermi-Hubbard type models.
Existing experimental and numerical results on hole-doped cuprates lead us to conjecture the existence of a light, long-lived, low-energy excited state of two holes.
The emergent Feshbach resonance we propose could also underlie superconductivity in other doped antiferromagnetic Mott insulators.
arXiv Detail & Related papers (2023-12-05T18:59:59Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Tuning the topology of $p$-wave superconductivity in an analytically
solvable two-band model [0.0]
We introduce and solve a two-band model of spinless fermions with $p_x$-wave pairing on a square lattice.
We show that its phase diagram contains a topologically nontrivial weak pairing phase as well as a trivial strong pairing phase.
arXiv Detail & Related papers (2020-10-01T01:20:46Z) - Staggered superfluid phases of dipolar bosons in two-dimensional square
lattices [0.0]
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice.
The bosons interact via the repulsive dipolar interactions and s-wave scattering.
We show that this interference gives rise to staggered superfluid and supersolid phases at vanishing kinetic energy.
arXiv Detail & Related papers (2020-08-03T13:39:52Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - A study on quantum gases: bosons in optical lattices and the
one-dimensional interacting Bose gas [0.0]
Bosonic atoms confined in optical lattices are described by the Bose-Hubbard model.
In the vicinity of the phase boundary, there are degeneracies that occur between every two adjacent lobes.
Motivated by this, we develop perturbative methods to solve the degeneracy-related problems.
arXiv Detail & Related papers (2020-06-23T15:43:14Z) - Traversable wormhole and Hawking-Page transition in coupled complex SYK
models [0.0]
Recent work has shown that coupling two identical Sachdev-Ye-Kitaev (SYK) models can realize a phase of matter that is holographically dual to an eternal traversable wormhole.
Here we generalize these ideas to a pair of coupled SYK models with complex fermions that respect a global U(1) charge symmetry.
Such models show richer behavior than conventional SYK models with Majorana fermions and may be easier to realize experimentally.
arXiv Detail & Related papers (2020-06-10T18:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.