Feshbach hypothesis of high-Tc superconductivity in cuprates
- URL: http://arxiv.org/abs/2312.02982v1
- Date: Tue, 5 Dec 2023 18:59:59 GMT
- Title: Feshbach hypothesis of high-Tc superconductivity in cuprates
- Authors: Lukas Homeier and Hannah Lange and Eugene Demler and Annabelle Bohrdt
and Fabian Grusdt
- Abstract summary: We present a Feshbach perspective on the origin of strong pairing in Fermi-Hubbard type models.
Existing experimental and numerical results on hole-doped cuprates lead us to conjecture the existence of a light, long-lived, low-energy excited state of two holes.
The emergent Feshbach resonance we propose could also underlie superconductivity in other doped antiferromagnetic Mott insulators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resonant interactions associated with the emergence of a bound state
constitute one of the cornerstones of modern many-body physics, ranging from
Kondo physics, BEC-BCS crossover, to tunable interactions at Feshbach
resonances in ultracold atoms or 2D semiconductors. Here we present a Feshbach
perspective on the origin of strong pairing in Fermi-Hubbard type models. We
perform a theoretical analysis of interactions between charge carriers in doped
Mott insulators, modeled by a near-resonant two-channel scattering problem, and
find strong evidence for Feshbach-type interactions in the $d_{x^2-y^2}$
channel that can support strong pairing, consistent with the established
phenomenology of cuprates. Existing experimental and numerical results on
hole-doped cuprates lead us to conjecture the existence of a light, long-lived,
low-energy excited state of two holes with bipolaron character in these
systems, which enables near-resonant interactions and can thus provide a
microscopic foundation for theories of high-temperature superconductivity
involving strong attraction, as assumed e.g. in BEC-BCS crossover scenarios. To
put our theory to a direct test we suggest to use coincidence angle-resolved
photoemission spectroscopy (cARPES), pair-tunneling measurements or less direct
pump-probe experiments. The emergent Feshbach resonance we propose could also
underlie superconductivity in other doped antiferromagnetic Mott insulators, as
recently proposed for bilayer nickelates, highlighting its potential as a
unifying strong-coupling pairing mechanism rooted in quantum magnetism.
Related papers
- Bardeen-Cooper-Schrieffer interaction as an infinite-range Penson-Kolb pairing mechanism [0.0]
We show that the well-known $(kuparrow, -kdownarrow)$ Bardeen-Cooper-Schrieffer interaction, when considered in real space, is equivalent to an infinite-range Penson-Kolb pairing mechanism.
We investigate the dynamics of fermionic particles confined in a ring-shaped lattice.
arXiv Detail & Related papers (2024-01-30T10:29:46Z) - Scattering theory of mesons in doped antiferromagnetic Mott insulators: Multichannel perspective and Feshbach resonance [0.0]
Superconductivity at comparatively high temperatures upon hole doping an antiferromagnetic (AFM) Mott insulator.
Recently, it has been proposed that at strong coupling and low doping, the fundamental one- and two-hole meson-type constituents -- magnetic polarons and bipolaronic pairs -- likely realize an emergent Feshbach resonance.
arXiv Detail & Related papers (2023-12-05T18:59:52Z) - Feshbach resonances of composite charge carrier states in atomically
thin semiconductor heterostructures [0.0]
tunneling-induced layer hybridization can lead to the emergence of two distinct classes of Feshbach resonances in atomically thin semiconductors.
Based on microscopic scattering theory we show that these two types of Feshbach resonances allow to tune interactions between electrons and both short-lived intralayer, as well as long-lived interlayer excitons.
arXiv Detail & Related papers (2023-10-12T21:33:11Z) - Pairing dome from an emergent Feshbach resonance in a strongly repulsive bilayer model [0.0]
A key to understanding unconventional superconductivity lies in unraveling the pairing mechanism of mobile charge carriers in doped antiferromagnets.
Here, we study pairing in a mixed-dimensional (mixD) $t-J$ model, featuring robust binding energies.
Our work provides a microscopic theory of pairing in the doped mixD system with dominant repulsion, closely related to bilayer, Ni-based superconductors.
arXiv Detail & Related papers (2023-09-22T17:59:13Z) - Superconductivity in a Topological Lattice Model with Strong Repulsion [1.1608869880392607]
We introduce a minimal 2D lattice model that incorporates time-reversal symmetry, band topology, and strong repulsive interactions.
We demonstrate that it is formed from the weak pairing of holes atop the QSH insulator.
Motivated by this, we elucidate structural similarities and differences between our model and those of TBG in its chiral limit.
arXiv Detail & Related papers (2023-08-21T18:00:01Z) - Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.