Learning Generalizable Tool-use Skills through Trajectory Generation
- URL: http://arxiv.org/abs/2310.00156v5
- Date: Fri, 6 Sep 2024 19:00:41 GMT
- Title: Learning Generalizable Tool-use Skills through Trajectory Generation
- Authors: Carl Qi, Yilin Wu, Lifan Yu, Haoyue Liu, Bowen Jiang, Xingyu Lin, David Held,
- Abstract summary: We train a single model on four different deformable object manipulation tasks.
The model generalizes to various novel tools, significantly outperforming baselines.
We further test our trained policy in the real world with unseen tools, where it achieves the performance comparable to human.
- Score: 13.879860388944214
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Autonomous systems that efficiently utilize tools can assist humans in completing many common tasks such as cooking and cleaning. However, current systems fall short of matching human-level of intelligence in terms of adapting to novel tools. Prior works based on affordance often make strong assumptions about the environments and cannot scale to more complex, contact-rich tasks. In this work, we tackle this challenge and explore how agents can learn to use previously unseen tools to manipulate deformable objects. We propose to learn a generative model of the tool-use trajectories as a sequence of tool point clouds, which generalizes to different tool shapes. Given any novel tool, we first generate a tool-use trajectory and then optimize the sequence of tool poses to align with the generated trajectory. We train a single model on four different challenging deformable object manipulation tasks, using demonstration data from only one tool per task. The model generalizes to various novel tools, significantly outperforming baselines. We further test our trained policy in the real world with unseen tools, where it achieves the performance comparable to human. Additional materials can be found on our project website: https://sites.google.com/view/toolgen.
Related papers
- MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation [25.360660222418183]
We present MetaTool, a novel tool learning methodology designed to generalize across any reusable toolset.
By incorporating meta-task data into task-oriented training, our method significantly enhances the performance of open-source Large Language Models.
arXiv Detail & Related papers (2024-07-15T10:15:41Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyTool is a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction.
It can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios.
arXiv Detail & Related papers (2024-01-11T15:45:11Z) - Learning Generalizable Tool Use with Non-rigid Grasp-pose Registration [29.998917158604694]
We present a novel method to enable reinforcement learning of tool use behaviors.
Our approach provides a scalable way to learn the operation of tools in a new category using only a single demonstration.
The learned policies solve complex tool use tasks and generalize to unseen tools at test time.
arXiv Detail & Related papers (2023-07-31T08:49:11Z) - ToolAlpaca: Generalized Tool Learning for Language Models with 3000
Simulated Cases [49.7798644853604]
This paper introduces ToolAlpaca, a framework designed to automatically generate a diverse tool-use corpus and learn generalized tool-use abilities on compact language models.
We show that ToolAlpaca achieves effective generalized tool-use capabilities comparable to those of extremely large language models like GPT-3.5.
arXiv Detail & Related papers (2023-06-08T15:46:32Z) - Making Language Models Better Tool Learners with Execution Feedback [36.30542737293863]
Tools serve as pivotal interfaces that enable humans to understand and reshape the environment.
Existing tool learning methodologies induce large language models to utilize tools indiscriminately.
We propose Tool leaRning wIth exeCution fEedback (TRICE), a two-stage end-to-end framework that enables the model to continually learn through feedback derived from tool execution.
arXiv Detail & Related papers (2023-05-22T14:37:05Z) - Tool Learning with Foundation Models [158.8640687353623]
With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans.
Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field.
arXiv Detail & Related papers (2023-04-17T15:16:10Z) - Toolformer: Language Models Can Teach Themselves to Use Tools [62.04867424598204]
Language models (LMs) exhibit remarkable abilities to solve new tasks from just a few examples or textual instructions, especially at scale.
We show that LMs can teach themselves to use external tools via simple APIs and achieve the best of both worlds.
We introduce Toolformer, a model trained to decide which APIs to call, when to call them, what arguments to pass, and how to best incorporate the results into future token prediction.
arXiv Detail & Related papers (2023-02-09T16:49:57Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - TANGO: Commonsense Generalization in Predicting Tool Interactions for
Mobile Manipulators [15.61285199988595]
We introduce TANGO, a novel neural model for predicting task-specific tool interactions.
TANGO encodes the world state comprising of objects and symbolic relationships between them using a graph neural network.
We show that by augmenting the representation of the environment with pre-trained embeddings derived from a knowledge-base, the model can generalize effectively to novel environments.
arXiv Detail & Related papers (2021-05-05T18:11:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.