MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation
- URL: http://arxiv.org/abs/2407.12871v2
- Date: Tue, 8 Oct 2024 11:39:07 GMT
- Title: MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation
- Authors: Xiaohan Wang, Dian Li, Yilin Zhao, Sinbadliu, Hui Wang,
- Abstract summary: We present MetaTool, a novel tool learning methodology designed to generalize across any reusable toolset.
By incorporating meta-task data into task-oriented training, our method significantly enhances the performance of open-source Large Language Models.
- Score: 25.360660222418183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Utilizing tools with Large Language Models (LLMs) is essential for grounding AI agents in real-world applications. The prevailing approach involves few-shot prompting with demonstrations or fine-tuning with expert annotations. However, mere in-context demonstrations may fail to cover sufficient knowledge for complex tools and tasks. Training on solution paths is also hindered by the high cost of expert annotations and generalizing to new tools. A core challenge of generalizable tool use lies in understanding the "meta", or fundamental natures of tools that are transferable across tasks, such as causality and constraints. In this paper, we present MetaTool, a novel tool learning methodology designed to generalize across any reusable toolset. Our approach incorporates a self-supervised augmentation technique derived from a series of meta-tasks. This involves predicting masked elements in the tool execution process. The self-supervised procedure enables scalable generation of high-quality QA data, which is handy for supervising tool understanding. By incorporating meta-task data into task-oriented training, our method significantly enhances the performance of open-source LLMs, achieving results comparable to ChatGPT in both tool-based planning and chatting scenarios. Through large-scale instruction tuning, the MetaTool model demonstrates impressive zero-shot generalizability on new tasks.
Related papers
- ToolGen: Unified Tool Retrieval and Calling via Generation [34.34787641393914]
We introduce ToolGen, a paradigm shift that integrates tool knowledge directly into the large language models' parameters.
We show that ToolGen achieves superior results in both tool retrieval and autonomous task completion.
ToolGen paves the way for more versatile, efficient, and autonomous AI systems.
arXiv Detail & Related papers (2024-10-04T13:52:32Z) - LLM With Tools: A Survey [0.0]
This paper delves into the methodology,challenges, and developments in the realm of teaching LLMs to use external tools.
We introduce a standardized paradigm for tool integration guided by a series of functions that map user instructions to actionable plans.
Our exploration reveals the various challenges encountered, such as tool invocation timing, selection accuracy, and the need for robust reasoning processes.
arXiv Detail & Related papers (2024-09-24T14:08:11Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraTool is a novel benchmark designed to improve and evaluate Large Language Models' ability in tool utilization.
It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving.
A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage.
arXiv Detail & Related papers (2024-01-30T16:52:56Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyTool is a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction.
It can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios.
arXiv Detail & Related papers (2024-01-11T15:45:11Z) - Large Language Models as Tool Makers [85.00361145117293]
We introduce a closed-loop framework, referred to as LLMs A s Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving.
Our approach consists of two phases: 1) tool making: an LLM acts as the tool maker that crafts tools for a set of tasks. 2) tool using: another LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving.
arXiv Detail & Related papers (2023-05-26T17:50:11Z) - Making Language Models Better Tool Learners with Execution Feedback [36.30542737293863]
Tools serve as pivotal interfaces that enable humans to understand and reshape the environment.
Existing tool learning methodologies induce large language models to utilize tools indiscriminately.
We propose Tool leaRning wIth exeCution fEedback (TRICE), a two-stage end-to-end framework that enables the model to continually learn through feedback derived from tool execution.
arXiv Detail & Related papers (2023-05-22T14:37:05Z) - ART: Automatic multi-step reasoning and tool-use for large language
models [105.57550426609396]
Large language models (LLMs) can perform complex reasoning in few- and zero-shot settings.
Each reasoning step can rely on external tools to support computation beyond the core LLM capabilities.
We introduce Automatic Reasoning and Tool-use (ART), a framework that uses frozen LLMs to automatically generate intermediate reasoning steps as a program.
arXiv Detail & Related papers (2023-03-16T01:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.