論文の概要: Quantization of Deep Neural Networks to facilitate self-correction of
weights on Phase Change Memory-based analog hardware
- arxiv url: http://arxiv.org/abs/2310.00337v1
- Date: Sat, 30 Sep 2023 10:47:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 04:59:21.292618
- Title: Quantization of Deep Neural Networks to facilitate self-correction of
weights on Phase Change Memory-based analog hardware
- Title(参考訳): 位相変化記憶型アナログハードウェアにおける重みの自己補正を容易にするディープニューラルネットワークの量子化
- Authors: Arseni Ivanov
- Abstract要約: 乗法重みの集合を近似するアルゴリズムを開発する。
これらの重みは、性能の損失を最小限に抑えながら、元のネットワークの重みを表現することを目的としている。
その結果、オンチップパルス発生器と組み合わせると、私たちの自己補正ニューラルネットワークはアナログ認識アルゴリズムで訓練されたものと同等に機能することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, hardware-accelerated neural networks have gained significant
attention for edge computing applications. Among various hardware options,
crossbar arrays, offer a promising avenue for efficient storage and
manipulation of neural network weights. However, the transition from trained
floating-point models to hardware-constrained analog architectures remains a
challenge. In this work, we combine a quantization technique specifically
designed for such architectures with a novel self-correcting mechanism. By
utilizing dual crossbar connections to represent both the positive and negative
parts of a single weight, we develop an algorithm to approximate a set of
multiplicative weights. These weights, along with their differences, aim to
represent the original network's weights with minimal loss in performance. We
implement the models using IBM's aihwkit and evaluate their efficacy over time.
Our results demonstrate that, when paired with an on-chip pulse generator, our
self-correcting neural network performs comparably to those trained with
analog-aware algorithms.
- Abstract(参考訳): 近年、ハードウェアアクセラレーションによるニューラルネットワークがエッジコンピューティングアプリケーションで注目を集めている。
様々なハードウェアオプションのうち、クロスバーアレイは、ニューラルネットワーク重みの効率的なストレージと操作のための有望な手段を提供する。
しかし、訓練済み浮動小数点モデルからハードウェア制約付きアナログアーキテクチャへの移行は依然として課題である。
本研究では,このようなアーキテクチャを念頭に設計された量子化手法と,新しい自己補正機構を組み合わせる。
重みの正と負の両方を表現するために二重クロスバー接続を利用することにより,乗法重みの組を近似するアルゴリズムを開発した。
これらの重みは、それらの違いとともに、元のネットワークの重みを表し、パフォーマンスの損失を最小限に抑えることを目的としている。
我々は,IBMのaihwkitを用いてモデルを実装し,その有効性を評価する。
その結果、オンチップパルス発生器と組み合わせると、私たちの自己補正ニューラルネットワークはアナログ認識アルゴリズムで訓練されたものと同等に機能することがわかった。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Incrementally-Computable Neural Networks: Efficient Inference for
Dynamic Inputs [75.40636935415601]
ディープラーニングは、センサーデータやユーザ入力などの動的入力を効率的に処理するという課題に直面していることが多い。
インクリメンタルな計算アプローチを採用し、入力の変化に応じて計算を再利用する。
本稿では,この手法をトランスフォーマーアーキテクチャに適用し,修正入力の分数に比例した複雑性を持つ効率的なインクリメンタル推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-27T16:30:27Z) - Synaptic metaplasticity with multi-level memristive devices [1.5598974049838272]
推論とトレーニングの両方において,メタ塑性を実現するためのメムリスタベースのハードウェアソリューションを提案する。
MNISTとFashion-MNISTの連続トレーニングにおいて,2層パーセプトロンの精度は97%,86%であった。
我々のアーキテクチャは、mmristorの制限された耐久性と互換性があり、メモリは15倍削減されている。
論文 参考訳(メタデータ) (2023-06-21T09:40:25Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
ニューロモルフィックコンピューティング(Neuromorphic Computing)は、アナログメモリの計算によってこの不均衡に直面している新興パラダイムである。
この研究は、異なる学習アルゴリズムがCompute-In-Memoryベースのハードウェアに与える影響を初めて比較し、その逆も行った。
論文 参考訳(メタデータ) (2022-12-29T15:10:59Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
量子化モデル全体を1つのモデルにカプセル化するための,ニューラルネットワーク重みの新しい垂直層表現について検討する。
理論的には、1つのモデルのトレーニングとメンテナンスのみを必要としながら、オンデマンドサービスの正確なネットワークを達成できます。
論文 参考訳(メタデータ) (2022-12-10T15:57:38Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
我々は、Zynq UltraScale + MPSoC ZCU104 FPGA上に実装されたPoT重みを持つハードウェアニューラルネットワークアクセラレーターが、均一量子化バージョンよりも少なくとも1.4x$のエネルギー効率を持つことを示す。
論文 参考訳(メタデータ) (2022-09-30T06:33:40Z) - Low-bit Shift Network for End-to-End Spoken Language Understanding [7.851607739211987]
本稿では,連続パラメータを低ビットの2値に量子化する2乗量子化法を提案する。
これにより、高価な乗算演算を除去し、低ビット重みを使用すれば計算の複雑さを低減できる。
論文 参考訳(メタデータ) (2022-07-15T14:34:22Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
量子化は、与えられたニューラルネットワークの高精度ウェイトとアクティベーションを、メモリ使用量と計算量を減らすために、低精度ウェイト/アクティベーションに変換することを目的としている。
コンパクトに設計されたバックボーンアーキテクチャの極端量子化(1ビットの重み/1ビットのアクティベーション)は、深刻な性能劣化をもたらす。
本稿では,性能劣化を効果的に緩和する新しいQAT法を提案する。
論文 参考訳(メタデータ) (2022-07-04T13:25:49Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
我々は,ネットワーク量子化技術を用いて推論を高速化し,計算限定プラットフォームでの利用を可能にする。
バイナリディスクリプタを用いた効率的な量子化ネットワークZippyPointは,ネットワーク実行速度,ディスクリプタマッチング速度,3Dモデルサイズを改善する。
これらの改善は、ホモグラフィー推定、視覚的ローカライゼーション、マップフリーな視覚的再ローカライゼーションのタスクで評価されるように、小さなパフォーマンス劣化をもたらす。
論文 参考訳(メタデータ) (2022-03-07T18:59:03Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。