FedLPA: One-shot Federated Learning with Layer-Wise Posterior Aggregation
- URL: http://arxiv.org/abs/2310.00339v5
- Date: Sun, 20 Oct 2024 05:36:03 GMT
- Title: FedLPA: One-shot Federated Learning with Layer-Wise Posterior Aggregation
- Authors: Xiang Liu, Liangxi Liu, Feiyang Ye, Yunheng Shen, Xia Li, Linshan Jiang, Jialin Li,
- Abstract summary: FedLPA is a layer-wise posterior aggregation method for federated learning.
We show that FedLPA significantly improves learning performance over state-of-the-art methods across several metrics.
- Score: 7.052566906745796
- License:
- Abstract: Efficiently aggregating trained neural networks from local clients into a global model on a server is a widely researched topic in federated learning. Recently, motivated by diminishing privacy concerns, mitigating potential attacks, and reducing communication overhead, one-shot federated learning (i.e., limiting client-server communication into a single round) has gained popularity among researchers. However, the one-shot aggregation performances are sensitively affected by the non-identical training data distribution, which exhibits high statistical heterogeneity in some real-world scenarios. To address this issue, we propose a novel one-shot aggregation method with layer-wise posterior aggregation, named FedLPA. FedLPA aggregates local models to obtain a more accurate global model without requiring extra auxiliary datasets or exposing any private label information, e.g., label distributions. To effectively capture the statistics maintained in the biased local datasets in the practical non-IID scenario, we efficiently infer the posteriors of each layer in each local model using layer-wise Laplace approximation and aggregate them to train the global parameters. Extensive experimental results demonstrate that FedLPA significantly improves learning performance over state-of-the-art methods across several metrics.
Related papers
- SFedCA: Credit Assignment-Based Active Client Selection Strategy for Spiking Federated Learning [15.256986486372407]
Spiking federated learning allows resource-constrained devices to train collaboratively at low power consumption without exchanging local data.
Existing spiking federated learning methods employ a random selection approach for client aggregation, assuming unbiased client participation.
We propose a credit assignment-based active client selection strategy, the SFedCA, to judiciously aggregate clients that contribute to the global sample distribution balance.
arXiv Detail & Related papers (2024-06-18T01:56:22Z) - FedCRL: Personalized Federated Learning with Contrastive Shared Representations for Label Heterogeneity in Non-IID Data [13.146806294562474]
This paper proposes a novel personalized federated learning algorithm, named Federated Contrastive Shareable Representations (FedCoSR)
parameters of local models' shallow layers and typical local representations are both considered shareable information for the server.
To address poor performance caused by label distribution skew among clients, contrastive learning is adopted between local and global representations.
arXiv Detail & Related papers (2024-04-27T14:05:18Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Federated Learning with Intermediate Representation Regularization [14.01585596739954]
Federated learning (FL) enables remote clients to collaboratively train a model without exposing their private data.
Previous studies accomplish this by regularizing the distance between the representations learned by the local and global models.
We introduce FedIntR, which provides a more fine-grained regularization by integrating the representations of intermediate layers into the local training process.
arXiv Detail & Related papers (2022-10-28T01:43:55Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
Uneven distribution of local data across different edge devices (clients) results in slow model training and accuracy reduction in federated learning.
This work introduces a novel non-IID type encountered in real-world datasets, namely cluster-skew.
We propose FedDRL, a novel FL model that employs deep reinforcement learning to adaptively determine each client's impact factor.
arXiv Detail & Related papers (2022-08-04T04:24:16Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Analysis and Optimal Edge Assignment For Hierarchical Federated Learning
on Non-IID Data [43.32085029569374]
Federated learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena.
In the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model.
We propose a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer.
arXiv Detail & Related papers (2020-12-10T12:18:13Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.