Federated Learning with Intermediate Representation Regularization
- URL: http://arxiv.org/abs/2210.15827v2
- Date: Thu, 20 Apr 2023 07:53:52 GMT
- Title: Federated Learning with Intermediate Representation Regularization
- Authors: Ye Lin Tun, Chu Myaet Thwal, Yu Min Park, Seong-Bae Park, Choong Seon
Hong
- Abstract summary: Federated learning (FL) enables remote clients to collaboratively train a model without exposing their private data.
Previous studies accomplish this by regularizing the distance between the representations learned by the local and global models.
We introduce FedIntR, which provides a more fine-grained regularization by integrating the representations of intermediate layers into the local training process.
- Score: 14.01585596739954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contrast to centralized model training that involves data collection,
federated learning (FL) enables remote clients to collaboratively train a model
without exposing their private data. However, model performance usually
degrades in FL due to the heterogeneous data generated by clients of diverse
characteristics. One promising strategy to maintain good performance is by
limiting the local training from drifting far away from the global model.
Previous studies accomplish this by regularizing the distance between the
representations learned by the local and global models. However, they only
consider representations from the early layers of a model or the layer
preceding the output layer. In this study, we introduce FedIntR, which provides
a more fine-grained regularization by integrating the representations of
intermediate layers into the local training process. Specifically, FedIntR
computes a regularization term that encourages the closeness between the
intermediate layer representations of the local and global models.
Additionally, FedIntR automatically determines the contribution of each layer's
representation to the regularization term based on the similarity between local
and global representations. We conduct extensive experiments on various
datasets to show that FedIntR can achieve equivalent or higher performance
compared to the state-of-the-art approaches. Our code is available at
https://github.com/YLTun/FedIntR.
Related papers
- Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated learning (FL) is a distributed learning framework that leverages commonalities between distributed client datasets to train a global model.
personalized federated learning (PFL) seeks to address this by learning individual models tailored to each client.
We propose an algorithm, pFedFDA, that efficiently generates personalized models by adapting global generative classifiers to their local feature distributions.
arXiv Detail & Related papers (2024-11-01T03:03:52Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT) is a paradigm wherein data collected from decentralized local clients manifests a globally prevalent long-tailed distribution.
This paper introduces an approach termed Federated Local and Generic Model Training in Fed-LT (FedLoGe), which enhances both local and generic model performance.
arXiv Detail & Related papers (2024-01-17T05:04:33Z) - FedLPA: One-shot Federated Learning with Layer-Wise Posterior Aggregation [7.052566906745796]
FedLPA is a layer-wise posterior aggregation method for federated learning.
We show that FedLPA significantly improves learning performance over state-of-the-art methods across several metrics.
arXiv Detail & Related papers (2023-09-30T10:51:27Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Tackling Data Heterogeneity in Federated Learning with Class Prototypes [44.746340839025194]
We propose FedNH, a novel method that improves the local models' performance for both personalization and generalization.
We show that imposing uniformity helps to combat prototype collapse while infusing class semantics improves local models.
arXiv Detail & Related papers (2022-12-06T05:15:38Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - FedAvg with Fine Tuning: Local Updates Lead to Representation Learning [54.65133770989836]
Federated Averaging (FedAvg) algorithm consists of alternating between a few local gradient updates at client nodes, followed by a model averaging update at the server.
We show that the reason behind generalizability of the FedAvg's output is its power in learning the common data representation among the clients' tasks.
We also provide empirical evidence demonstrating FedAvg's representation learning ability in federated image classification with heterogeneous data.
arXiv Detail & Related papers (2022-05-27T00:55:24Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.