論文の概要: AI-Dentify: Deep learning for proximal caries detection on bitewing x-ray -- HUNT4 Oral Health Study
- arxiv url: http://arxiv.org/abs/2310.00354v3
- Date: Fri, 22 Mar 2024 10:36:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 22:49:51.969699
- Title: AI-Dentify: Deep learning for proximal caries detection on bitewing x-ray -- HUNT4 Oral Health Study
- Title(参考訳): AI-Dentify: 噛みつくX線による近位線検出のための深層学習 -- HUNT4経口健康研究
- Authors: Javier Pérez de Frutos, Ragnhild Holden Helland, Shreya Desai, Line Cathrine Nymoen, Thomas Langø, Theodor Remman, Abhijit Sen,
- Abstract要約: 人工知能の使用は、噛まれた画像の迅速かつ情報的な分析を提供することで、診断を支援する可能性がある。
HUNT4口腔健康研究から得られた13,887個の噛み付きデータセットは、6人の異なる専門家によって個別に注釈付けされた。
同じ6人の歯科医が共同で注釈を付けた197枚の画像のコンセンサスデータセットを用いて評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Dental caries diagnosis requires the manual inspection of diagnostic bitewing images of the patient, followed by a visual inspection and probing of the identified dental pieces with potential lesions. Yet the use of artificial intelligence, and in particular deep-learning, has the potential to aid in the diagnosis by providing a quick and informative analysis of the bitewing images. Methods: A dataset of 13,887 bitewings from the HUNT4 Oral Health Study were annotated individually by six different experts, and used to train three different object detection deep-learning architectures: RetinaNet (ResNet50), YOLOv5 (M size), and EfficientDet (D0 and D1 sizes). A consensus dataset of 197 images, annotated jointly by the same six dentist, was used for evaluation. A five-fold cross validation scheme was used to evaluate the performance of the AI models. Results: he trained models show an increase in average precision and F1-score, and decrease of false negative rate, with respect to the dental clinicians. When compared against the dental clinicians, the YOLOv5 model shows the largest improvement, reporting 0.647 mean average precision, 0.548 mean F1-score, and 0.149 mean false negative rate. Whereas the best annotators on each of these metrics reported 0.299, 0.495, and 0.164 respectively. Conclusion: Deep-learning models have shown the potential to assist dental professionals in the diagnosis of caries. Yet, the task remains challenging due to the artifacts natural to the bitewing images.
- Abstract(参考訳): 背景: 歯列診断には, 患者の咬合像を手動で検査する必要がある。
しかし、人工知能の使用、特にディープラーニングは、噛み付く画像の迅速かつ情報的な分析を提供することで、診断を助ける可能性がある。
方法: HUNT4 Oral Health Studyの13,887個の噛み付きデータセットを6つの専門家によって個別に注釈付けし、RetinaNet(ResNet50)、YOLOv5(Mサイズ)、EfficientDet(D0とD1サイズ)という3つの異なるオブジェクト検出ディープラーニングアーキテクチャをトレーニングした。
同じ6人の歯科医が共同で注釈を付けた197枚の画像のコンセンサスデータセットを用いて評価を行った。
AIモデルの性能を評価するために、5倍のクロスバリデーションスキームが用いられた。
結果: トレーニングモデルでは, 平均精度とF1スコアが増加し, 偽陰性率の低下がみられた。
歯科医と比較すると、YOLOv5モデルが最も改善しており、平均精度0.647、F1スコア0.548、偽陰性率0.149が報告されている。
これらはそれぞれ0.299, 0.495, 0.164であった。
結論: 深層学習モデルは, ケーリーの診断において歯科専門医を支援する可能性を示唆している。
しかし、その課題は、噛み付く画像に自然に生じる人工物のため、依然として挑戦的だ。
関連論文リスト
- A Sequential Framework for Detection and Classification of Abnormal
Teeth in Panoramic X-rays [1.8962225869778402]
本報告では,MICCAI 2023におけるパノラマX線検査における歯科審美と診断の解決策について述べる。
本手法は, 異常歯の検出・分類作業に適した多段階の枠組みから構成される。
論文 参考訳(メタデータ) (2023-08-31T13:47:01Z) - Generative Adversarial Networks for Dental Patient Identity Protection
in Orthodontic Educational Imaging [0.0]
本研究は, 歯科患者イメージを効果的に識別するためのGANインバージョン技術を提案する。
この手法は, 重要な歯科的特徴を保ちながら, プライバシの懸念に対処し, 歯科教育や研究に有用な資源を創出する。
論文 参考訳(メタデータ) (2023-07-05T04:14:57Z) - Significantly improving zero-shot X-ray pathology classification via
fine-tuning pre-trained image-text encoders [51.14431540035141]
下流のゼロショット病理分類性能を改善するために,文サンプリングと正対損失緩和に基づく新たな微調整手法を提案する。
4種類の胸部X線データセットを用いてゼロショット病理分類性能を劇的に改善した。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Self-Supervised Learning with Masked Image Modeling for Teeth Numbering,
Detection of Dental Restorations, and Instance Segmentation in Dental
Panoramic Radiographs [8.397847537464534]
本研究の目的は,SimMIM や UM-MAE といった近年の自己教師型学習手法を応用して,限られた数の歯科用ラジオグラフィーのモデル効率と理解を高めることである。
我々の知る限りでは、歯科用パノラマX線写真にスイニングトランスフォーマーに自己教師あり学習法を適用した最初の研究である。
論文 参考訳(メタデータ) (2022-10-20T16:50:07Z) - Forensic Dental Age Estimation Using Modified Deep Learning Neural
Network [0.0]
本研究は, 年齢8歳から68歳までの被験者のDPR画像1,332例を用いて, 法医学的年齢を自動推定する手法を提案する。
平均絶対誤差(MAE)は3.13、根平均二乗誤差(RMSE)は4.77、相関係数R$2$は87%であった。
論文 参考訳(メタデータ) (2022-08-21T04:06:04Z) - OdontoAI: A human-in-the-loop labeled data set and an online platform to
boost research on dental panoramic radiographs [53.67409169790872]
本研究では, 歯科用パノラマX線画像の公開データセットの構築について述べる。
我々はHuman-in-the-loop(HITL)の概念の恩恵を受け、ラベリング手順を高速化する。
その結果,HITLによるラベル付け時間短縮率は51%であり,連続作業時間390時間以上節約できた。
論文 参考訳(メタデータ) (2022-03-29T18:57:23Z) - Osteoporosis Prescreening using Panoramic Radiographs through a Deep
Convolutional Neural Network with Attention Mechanism [65.70943212672023]
注意モジュールを持つディープ畳み込みニューラルネットワーク(CNN)はパノラマX線写真上で骨粗しょう症を検出することができる。
49歳から60歳までの70種類のパノラマX線写真(PR)のデータセットを用いて検討した。
論文 参考訳(メタデータ) (2021-10-19T00:03:57Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Individual Tooth Detection and Identification from Dental Panoramic
X-Ray Images via Point-wise Localization and Distance Regularization [10.877276642014515]
提案したネットワークは、まずすべての解剖学的歯に対して中心点回帰を行い、各歯を自動的に識別する。
歯の箱は、パッチベースでカスケードニューラルネットワークを用いて個別に局所化される。
実験結果から,提案アルゴリズムは最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-04-12T04:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。