論文の概要: ResolvNet: A Graph Convolutional Network with multi-scale Consistency
- arxiv url: http://arxiv.org/abs/2310.00431v2
- Date: Mon, 30 Oct 2023 15:42:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 22:39:35.056888
- Title: ResolvNet: A Graph Convolutional Network with multi-scale Consistency
- Title(参考訳): ResolvNet: マルチスケール一貫性を備えたグラフ畳み込みネットワーク
- Authors: Christian Koke, Abhishek Saroha, Yuesong Shen, Marvin Eisenberger,
Daniel Cremers
- Abstract要約: マルチスケール一貫性の概念を導入する。
グラフレベルでは、マルチスケールの一貫性は、異なる解像度で同じオブジェクトを記述する異なるグラフが同様の特徴ベクトルを割り当てるべきという事実を指す。
本稿では,リゾルダーの数学的概念に基づくフレキシブルグラフニューラルネットワークResolvNetを紹介する。
- 参考スコア(独自算出の注目度): 47.98039061491647
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It is by now a well known fact in the graph learning community that the
presence of bottlenecks severely limits the ability of graph neural networks to
propagate information over long distances. What so far has not been appreciated
is that, counter-intuitively, also the presence of strongly connected
sub-graphs may severely restrict information flow in common architectures.
Motivated by this observation, we introduce the concept of multi-scale
consistency. At the node level this concept refers to the retention of a
connected propagation graph even if connectivity varies over a given graph. At
the graph-level, multi-scale consistency refers to the fact that distinct
graphs describing the same object at different resolutions should be assigned
similar feature vectors. As we show, both properties are not satisfied by
poular graph neural network architectures. To remedy these shortcomings, we
introduce ResolvNet, a flexible graph neural network based on the mathematical
concept of resolvents. We rigorously establish its multi-scale consistency
theoretically and verify it in extensive experiments on real world data: Here
networks based on this ResolvNet architecture prove expressive; out-performing
baselines significantly on many tasks; in- and outside the multi-scale setting.
- Abstract(参考訳): 現在、グラフ学習コミュニティでよく知られている事実として、ボトルネックの存在は、グラフニューラルネットワークが長距離情報を伝播する能力を著しく制限している。
今のところ評価されていないのは、直観的には、強い連結されたサブグラフの存在が、共通のアーキテクチャにおける情報フローを厳しく制限する可能性があることだ。
この観測により,マルチスケール一貫性の概念が導入された。
ノードレベルでは、この概念は与えられたグラフ上で接続が変化しても接続された伝播グラフの保持を指す。
グラフレベルでは、マルチスケールの一貫性は、異なる解像度で同じオブジェクトを記述する異なるグラフが同様の特徴ベクトルを割り当てるべきという事実を指す。
このように、両方の特性は、多面グラフニューラルネットワークアーキテクチャでは満足できない。
これらの欠点を補うために,リゾルダーの数学的概念に基づくフレキシブルグラフニューラルネットワークResolvNetを導入する。
このResolvNetアーキテクチャに基づくネットワークは、多くのタスク、すなわちマルチスケール設定の内外において、はるかに高いパフォーマンスのベースラインを誇示しています。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
差別化可能なノード選択(MGCN-DNS)を備えた多視点グラフ畳み込みネットワーク(Multi-view Graph Convolutional Network)を提案する。
MGCN-DNSは、マルチチャネルグラフ構造データを入力として受け入れ、微分可能なニューラルネットワークを通じてより堅牢なグラフ融合を学ぶことを目的としている。
提案手法の有効性は,最先端手法と厳密な比較により検証した。
論文 参考訳(メタデータ) (2022-12-09T21:48:36Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
グラフニューラルネットワークは、グラフ上で定義されたデータの学習と分析に対処する問題の中心となっている。
最近の研究では、複数の近隣サイズを同時に考慮し、適応的にそれらを調整する必要があるためです。
ランダムに配線されたアーキテクチャを用いることで、ネットワークの容量を増大させ、よりリッチな表現を得ることができることを示す。
論文 参考訳(メタデータ) (2021-03-29T12:34:36Z) - Graph Fairing Convolutional Networks for Anomaly Detection [7.070726553564701]
半教師付き異常検出のためのスキップ接続付きグラフ畳み込みネットワークを提案する。
本モデルの有効性は,5つのベンチマークデータセットに対する広範な実験によって実証された。
論文 参考訳(メタデータ) (2020-10-20T13:45:47Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
本稿では,マルチレゾリューション・ハール型ウェーブレット(MathNet)を用いたグラフニューラルネットワークのためのフレームワークを提案する。
提案したMathNetは、特にデータセットにおいて、既存のGNNモデルよりも優れている。
論文 参考訳(メタデータ) (2020-07-22T05:00:59Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - How hard is to distinguish graphs with graph neural networks? [32.09819774228997]
本研究では,メッセージパッシングモデル(MPNN)におけるグラフアイソモーフィズムの分類変種に対する硬度結果の導出を行う。
MPNNは、今日のグラフニューラルネットワークの大部分を包含しており、ノードにユニークな特徴が与えられた場合、普遍的である。
12のグラフ分類タスクと420のネットワークを含む実証的研究は、実際の性能と理論的予測の間に強い整合性を示す。
論文 参考訳(メタデータ) (2020-05-13T22:28:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。