On the Role of Neural Collapse in Meta Learning Models for Few-shot
Learning
- URL: http://arxiv.org/abs/2310.00451v2
- Date: Sun, 8 Oct 2023 04:48:55 GMT
- Title: On the Role of Neural Collapse in Meta Learning Models for Few-shot
Learning
- Authors: Saaketh Medepalli and Naren Doraiswamy
- Abstract summary: This study is the first to explore and understand the properties of neural collapse in meta learning frameworks for few-shot learning.
We perform studies on the Omniglot dataset in the few-shot setting and study the neural collapse phenomenon.
- Score: 0.9729803206187322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta-learning frameworks for few-shot learning aims to learn models that can
learn new skills or adapt to new environments rapidly with a few training
examples. This has led to the generalizability of the developed model towards
new classes with just a few labelled samples. However these networks are seen
as black-box models and understanding the representations learnt under
different learning scenarios is crucial. Neural collapse ($\mathcal{NC}$) is a
recently discovered phenomenon which showcases unique properties at the network
proceeds towards zero loss. The input features collapse to their respective
class means, the class means form a Simplex equiangular tight frame (ETF) where
the class means are maximally distant and linearly separable, and the
classifier acts as a simple nearest neighbor classifier. While these phenomena
have been observed in simple classification networks, this study is the first
to explore and understand the properties of neural collapse in meta learning
frameworks for few-shot learning. We perform studies on the Omniglot dataset in
the few-shot setting and study the neural collapse phenomenon. We observe that
the learnt features indeed have the trend of neural collapse, especially as
model size grows, but to do not necessarily showcase the complete collapse as
measured by the $\mathcal{NC}$ properties.
Related papers
- Neural Metamorphosis [72.88137795439407]
This paper introduces a new learning paradigm termed Neural Metamorphosis (NeuMeta), which aims to build self-morphable neural networks.
NeuMeta directly learns the continuous weight manifold of neural networks.
It sustains full-size performance even at a 75% compression rate.
arXiv Detail & Related papers (2024-10-10T14:49:58Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class
Incremental Learning [120.53458753007851]
Few-shot class-incremental learning (FSCIL) has been a challenging problem as only a few training samples are accessible for each novel class in the new sessions.
We deal with this misalignment dilemma in FSCIL inspired by the recently discovered phenomenon named neural collapse.
We propose a neural collapse inspired framework for FSCIL. Experiments on the miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our proposed framework outperforms the state-of-the-art performances.
arXiv Detail & Related papers (2023-02-06T18:39:40Z) - Neural Collapse: A Review on Modelling Principles and Generalization [0.0]
Neural collapse essentially represents a state at which the within-class variability of final hidden layer outputs is infinitesimally small.
Despite the simplicity of this state, the dynamics and implications of reaching it are yet to be fully understood.
arXiv Detail & Related papers (2022-06-08T17:55:28Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - On the Role of Neural Collapse in Transfer Learning [29.972063833424215]
Recent results show that representations learned by a single classifier over many classes are competitive on few-shot learning problems.
We show that neural collapse generalizes to new samples from the training classes, and -- more importantly -- to new classes as well.
arXiv Detail & Related papers (2021-12-30T16:36:26Z) - Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse
in Imbalanced Training [39.137793683411424]
We introduce the textitLayer-Peeled Model, a non-yet analytically tractable optimization program.
We show that the model inherits many characteristics of well-trained networks, thereby offering an effective tool for explaining and predicting common empirical patterns of deep learning training.
In particular, we show that the model reveals a hitherto unknown phenomenon that we term textitMinority Collapse, which fundamentally limits the performance of deep learning models on the minority classes.
arXiv Detail & Related papers (2021-01-29T17:37:17Z) - Looking back to lower-level information in few-shot learning [4.873362301533825]
We propose the utilization of lower-level, supporting information, namely the feature embeddings of the hidden neural network layers, to improve classification accuracy.
Our experiments on two popular few-shot learning datasets, miniImageNet and tieredImageNet, show that our method can utilize the lower-level information in the network to improve state-of-the-art classification performance.
arXiv Detail & Related papers (2020-05-27T20:32:13Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
We focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem.
FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones.
We represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes.
arXiv Detail & Related papers (2020-04-23T03:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.