Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration
- URL: http://arxiv.org/abs/2312.05229v1
- Date: Fri, 8 Dec 2023 18:24:08 GMT
- Title: Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration
- Authors: Qi-Wei Wang, Da-Wei Zhou, Yi-Kai Zhang, De-Chuan Zhan, Han-Jia Ye
- Abstract summary: We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
- Score: 67.69532794049445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world scenarios are usually accompanied by continuously appearing
classes with scare labeled samples, which require the machine learning model to
incrementally learn new classes and maintain the knowledge of base classes. In
this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods
either introduce extra learnable components or rely on a frozen feature
extractor to mitigate catastrophic forgetting and overfitting problems.
However, we find a tendency for existing methods to misclassify the samples of
new classes into base classes, which leads to the poor performance of new
classes. In other words, the strong discriminability of base classes distracts
the classification of new classes. To figure out this intriguing phenomenon, we
observe that although the feature extractor is only trained on base classes, it
can surprisingly represent the semantic similarity between the base and unseen
new classes. Building upon these analyses, we propose a simple yet effective
Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of
new classes by fusing the new prototypes (i.e., mean features of a class) with
weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN
demonstrates remarkable performance and consistent improvements over baseline
methods in the few-shot learning scenario. Code is available at:
https://github.com/wangkiw/TEEN
Related papers
- Covariance-based Space Regularization for Few-shot Class Incremental Learning [25.435192867105552]
Few-shot Class Incremental Learning (FSCIL) requires the model to continually learn new classes with limited labeled data.
Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes.
Recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes.
arXiv Detail & Related papers (2024-11-02T08:03:04Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
We propose ExpAndable Subspace Ensemble (EASE) for PTM-based CIL.
We train a distinct lightweight adapter module for each new task, aiming to create task-specific subspaces.
Our prototype complement strategy synthesizes old classes' new features without using any old class instance.
arXiv Detail & Related papers (2024-03-18T17:58:13Z) - CBR - Boosting Adaptive Classification By Retrieval of Encrypted Network Traffic with Out-of-distribution [9.693391036125908]
One of the common approaches is using Machine learning or Deep Learning-based solutions on a fixed number of classes.
One of the solutions for handling unknown classes is to retrain the model, however, retraining models every time they become obsolete is both resource and time-consuming.
In this paper, we introduce Adaptive Classification By Retrieval CBR, a novel approach for encrypted network traffic classification.
arXiv Detail & Related papers (2024-03-17T13:14:09Z) - Harmonizing Base and Novel Classes: A Class-Contrastive Approach for
Generalized Few-Shot Segmentation [78.74340676536441]
We propose a class contrastive loss and a class relationship loss to regulate prototype updates and encourage a large distance between prototypes.
Our proposed approach achieves new state-of-the-art performance for the generalized few-shot segmentation task on PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2023-03-24T00:30:25Z) - Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class
Incremental Learning [120.53458753007851]
Few-shot class-incremental learning (FSCIL) has been a challenging problem as only a few training samples are accessible for each novel class in the new sessions.
We deal with this misalignment dilemma in FSCIL inspired by the recently discovered phenomenon named neural collapse.
We propose a neural collapse inspired framework for FSCIL. Experiments on the miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our proposed framework outperforms the state-of-the-art performances.
arXiv Detail & Related papers (2023-02-06T18:39:40Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes.
We show that the few-shot error of the learned feature map on new classes is small in case of class-feature-variability collapse.
arXiv Detail & Related papers (2022-12-23T18:46:05Z) - Class-incremental Novel Class Discovery [76.35226130521758]
We study the new task of class-incremental Novel Class Discovery (class-iNCD)
We propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes.
Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-18T13:49:27Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
We propose a new strategy for class-incremental learning: generative classification.
Our proposal is to learn the joint distribution p(x,y), factorized as p(x|y)p(y), and to perform classification using Bayes' rule.
As a proof-of-principle, here we implement this strategy by training a variational autoencoder for each class to be learned.
arXiv Detail & Related papers (2021-04-20T16:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.