論文の概要: SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning
- arxiv url: http://arxiv.org/abs/2310.00454v3
- Date: Tue, 26 Mar 2024 15:41:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:00:50.187343
- Title: SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning
- Title(参考訳): SimLVSeg: 2D+時間心エコー図における左室セグメンテーションの簡易化
- Authors: Fadillah Maani, Asim Ukaye, Nada Saadi, Numan Saeed, Mohammad Yaqub,
- Abstract要約: 狭義の心エコービデオから一貫した左室(LV)セグメンテーションを行うビデオベースネットワークであるSimLVSegを開発した。
SimLVSegは、時間的マスキングによる自己教師付き事前トレーニングと、スパースアノテーションからのLVセグメンテーションに適した弱い教師付き学習で構成されている。
我々は、SimLVSegが、最大の2D+時間心エコー画像データセットで93.32%のダイススコアを達成して、最先端のソリューションをいかに優れているかを実証する。
- 参考スコア(独自算出の注目度): 0.8672882547905405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Echocardiography has become an indispensable clinical imaging modality for general heart health assessment. From calculating biomarkers such as ejection fraction to the probability of a patient's heart failure, accurate segmentation of the heart structures allows doctors to assess the heart's condition and devise treatments with greater precision and accuracy. However, achieving accurate and reliable left ventricle segmentation is time-consuming and challenging due to different reasons. Hence, clinicians often rely on segmenting the left ventricular (LV) in two specific echocardiogram frames to make a diagnosis. This limited coverage in manual LV segmentation poses a challenge for developing automatic LV segmentation with high temporal consistency, as the resulting dataset is typically annotated sparsely. In response to this challenge, this work introduces SimLVSeg, a novel paradigm that enables video-based networks for consistent LV segmentation from sparsely annotated echocardiogram videos. SimLVSeg consists of self-supervised pre-training with temporal masking, followed by weakly supervised learning tailored for LV segmentation from sparse annotations. We demonstrate how SimLVSeg outperforms the state-of-the-art solutions by achieving a 93.32% (95%CI 93.21-93.43%) dice score on the largest 2D+time echocardiography dataset (EchoNet-Dynamic) while being more efficient. SimLVSeg is compatible with two types of video segmentation networks: 2D super image and 3D segmentation. To show the effectiveness of our approach, we provide extensive ablation studies, including pre-training settings and various deep learning backbones. We further conduct an out-of-distribution test to showcase SimLVSeg's generalizability on unseen distribution (CAMUS dataset). The code is publicly available at https://github.com/fadamsyah/SimLVSeg.
- Abstract(参考訳): 心エコー検査は、一般的な心臓の健康評価に欠かせない臨床像のモダリティとなった。
退院率などのバイオマーカーの計算から、患者の心不全の確率まで、心臓構造の正確なセグメンテーションにより、医師は心臓の状態を評価し、より正確な精度と精度で治療を考案することができる。
しかし、正確で信頼性の高い左室セグメンテーションを実現するには、様々な理由から時間がかかる。
したがって、臨床医は診断のために左室(LV)を2つの特定の心エコーフレームに分割することに頼ることが多い。
この手動LVセグメンテーションの限られた範囲は、結果として得られるデータセットが通常、わずかに注釈付けされているため、時間的一貫性の高い自動LVセグメンテーションを開発する上での課題となる。
この課題に応えて、この研究はSimLVSegというビデオベースのネットワークを、わずかな注釈付き心エコービデオから一貫したLVセグメンテーションを可能にする新しいパラダイムを導入している。
SimLVSegは、時間的マスキングによる自己教師付き事前トレーニングと、スパースアノテーションからのLVセグメンテーションに適した弱い教師付き学習で構成されている。
我々は、SimLVSegが93.32%(95%CI 93.21-93.43%)のダイススコアを最大2D+時間心エコー画像データセット(EchoNet-Dynamic)で達成し、より効率的で、最先端のソリューションよりも優れていることを示す。
SimLVSegは2Dスーパーイメージと3Dセグメンテーションという2種類のビデオセグメンテーションネットワークと互換性がある。
提案手法の有効性を示すため,事前学習設定や各種深層学習バックボーンなど,広範囲にわたるアブレーション研究を行った。
さらに,SimLVSegの非表示分布(CAMUSデータセット)に対する一般化可能性を示すために,アウト・オブ・ディストリビューションテストを実施している。
コードはhttps://github.com/fadamsyah/SimLVSeg.comで公開されている。
関連論文リスト
- Lost in Tracking: Uncertainty-guided Cardiac Cine MRI Segmentation at Right Ventricle Base [6.124743898202368]
本稿では,CMRセグメンテーションにおける未解決問題,特にRVベースに対処することを提案する。
本稿では,時間的アンコヒーレンスを利用して平面間動きの発生時にセグメンテーションを通知する新しいデュアルエンコーダU-Netアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-04T11:14:31Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
既存のビデオベースの手法では、左室領域や運動による左室の変化にはあまり注意を払わない。
本稿では,左室分割課題を伴う半教師付き補助学習パラダイムを提案し,左室領域の表現学習に寄与する。
提案手法は,0.22 MAE,0.26 RMSE,1.9%$R2$の改善により,スタンフォードデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-09T05:57:01Z) - Echocardiography Segmentation Using Neural ODE-based Diffeomorphic
Registration Field [0.0]
本稿ではニューラル常微分方程式(ニューラルODE)を用いた新しい拡散画像登録法を提案する。
提案手法であるEcho-ODEでは,従来の最先端技術と比較して,いくつかの改良が加えられている。
その結果,本手法は過去の最先端技術よりも多面的に優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-16T08:37:27Z) - Three-Dimensional Segmentation of the Left Ventricle in Late Gadolinium
Enhanced MR Images of Chronic Infarction Combining Long- and Short-Axis
Information [5.947543669357994]
LGE CMR画像におけるLVの自動3次元セグメンテーションのための包括的フレームワークを提案する。
本稿では,一貫した心筋エッジポイント検出のためのLVのパラメトリックモデルを提案する。
提案手法を,21組の実患者と4組のファントムデータを用いて評価した。
論文 参考訳(メタデータ) (2022-05-21T09:47:50Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
本稿では,ホルター記録を雑音に頑健に解析する3段階プロセスを提案する。
第1段階は、心拍位置を検出する勾配デコーダアーキテクチャを備えたセグメンテーションニューラルネットワーク(NN)である。
第2段階は、心拍を幅または幅に分類する分類NNである。
第3のステージは、NN機能の上に、患者対応機能を組み込んだ強化決定木(GBDT)である。
論文 参考訳(メタデータ) (2020-11-17T16:15:49Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
本稿では,CondenseNetとDenseNetの両方を改良したメモリ効率の良い畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
実験の結果,提案アーキテクチャは自動心臓診断チャレンジデータセット上で動作していることがわかった。
論文 参考訳(メタデータ) (2020-04-05T16:34:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。