論文の概要: Towards Understanding Adversarial Transferability in Federated Learning
- arxiv url: http://arxiv.org/abs/2310.00616v2
- Date: Thu, 21 Nov 2024 07:11:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:16:45.332615
- Title: Towards Understanding Adversarial Transferability in Federated Learning
- Title(参考訳): フェデレーション学習における対人移動可能性の理解に向けて
- Authors: Yijiang Li, Ying Gao, Haohan Wang,
- Abstract要約: 悪質なクライアントのグループは、そのアイデンティティを軽視し、良心的なクライアントとして振る舞うことによって、トレーニング中にモデルに影響を与えてきたが、その後、敵の役割に切り替えた。
この種の攻撃は微妙で検出が難しい。
提案攻撃が現在のFLシステムに対して高いセキュリティリスクを課すことを実証的に示す。
- 参考スコア(独自算出の注目度): 14.417827137513369
- License:
- Abstract: We investigate a specific security risk in FL: a group of malicious clients has impacted the model during training by disguising their identities and acting as benign clients but later switching to an adversarial role. They use their data, which was part of the training set, to train a substitute model and conduct transferable adversarial attacks against the federated model. This type of attack is subtle and hard to detect because these clients initially appear to be benign. The key question we address is: How robust is the FL system to such covert attacks, especially compared to traditional centralized learning systems? We empirically show that the proposed attack imposes a high security risk to current FL systems. By using only 3\% of the client's data, we achieve the highest attack rate of over 80\%. To further offer a full understanding of the challenges the FL system faces in transferable attacks, we provide a comprehensive analysis over the transfer robustness of FL across a spectrum of configurations. Surprisingly, FL systems show a higher level of robustness than their centralized counterparts, especially when both systems are equally good at handling regular, non-malicious data. We attribute this increased robustness to two main factors: 1) Decentralized Data Training: Each client trains the model on its own data, reducing the overall impact of any single malicious client. 2) Model Update Averaging: The updates from each client are averaged together, further diluting any malicious alterations. Both practical experiments and theoretical analysis support our conclusions. This research not only sheds light on the resilience of FL systems against hidden attacks but also raises important considerations for their future application and development.
- Abstract(参考訳): FLの特定のセキュリティリスクを調査し、悪意のあるクライアントのグループは、そのアイデンティティを軽視し、良心的なクライアントとして振る舞うことによって、トレーニング中にモデルに影響を与え、その後、敵対的な役割に切り替えた。
彼らは、訓練セットの一部であったデータを使用して、代替モデルを訓練し、フェデレートされたモデルに対してトランスファー可能な敵攻撃を行う。
この種の攻撃は微妙で検出が難しい。
このような隠蔽攻撃に対するFLシステムは,従来の集中型学習システムと比較して,どの程度堅牢なのでしょう?
提案攻撃が現在のFLシステムに対して高いセキュリティリスクを課すことを実証的に示す。
クライアントのデータのうち3\%しか使用せず、最も高い攻撃率を80%以上達成しています。
FLシステムにおいて、転送可能な攻撃において直面する課題について、より深く理解するために、FLの転送ロバスト性に関する包括的分析を提供する。
意外なことに、FLシステムは集中型のシステムよりも高いロバスト性を示している。
この強靭性の増加は2つの主な要因に起因している。
1) 分散データトレーニング: 各クライアントはモデルを独自のデータでトレーニングし、悪意のあるクライアントの全体的な影響を低減します。
2) モデルアップデート平均化: 各クライアントからの更新は平均化され、悪意のある変更がさらに希薄になる。
実用実験と理論的解析の両方が、我々の結論を支持している。
この研究は、隠れ攻撃に対するFLシステムのレジリエンスに光を当てるだけでなく、将来の応用と開発に重要な考慮を喚起する。
関連論文リスト
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning(FL)は、分散デバイスやデータソースのモデルトレーニングを可能にする、新興の機械学習アプローチである。
我々は、Fed-Creditと呼ばれる信頼性管理手法に基づく堅牢なFLアプローチを提案する。
その結果、比較的低い計算複雑性を維持しながら、敵攻撃に対する精度とレジリエンスが向上した。
論文 参考訳(メタデータ) (2024-05-20T03:35:13Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
マルチ分散マルチメディアクライアントは、グローバル共有モデルの共同学習のために、フェデレートラーニング(FL)を利用することができる。
FLは、GAN(C-GANs)をベースとしたクロスクライアント・ジェネレーティブ・敵ネットワーク(GANs)攻撃に苦しむ。
C-GAN攻撃に抵抗する現在のFLスキームを改善するためのFed-EDKD手法を提案する。
論文 参考訳(メタデータ) (2023-07-25T08:15:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
ブロックチェーンと分散台帳技術に基づくセキュアで信頼性の高いフェデレーション学習システムを提案する。
本システムでは,オンチェーン型スマートコントラクトを利用したピアツーピア投票機構と報酬アンドスラッシュ機構を組み込んで,悪意ある行動の検出と検出を行う。
論文 参考訳(メタデータ) (2023-07-02T11:23:33Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
フェデレートラーニング(FL)は、グローバル機械学習モデルを、参加する労働者のセット間で分散されたローカルデータから学習することを可能にする。
FLは、学習モデルの完全性に悪影響を及ぼす標的の毒殺攻撃に対して脆弱である。
FL標的攻撃に対抗する手段として,textitFL-Defenderを提案する。
論文 参考訳(メタデータ) (2022-07-02T16:04:46Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
悪意のあるクライアントは、モデル更新を害し、モデルアグリゲーションにおけるモデル更新の影響を増幅するために大量の要求を行う。
FLの既存の防御メソッドは、悪意のあるモデル更新を処理する一方で、すべての量の良性を扱うか、単にすべてのクライアントの量を無視/停止するだけである。
本稿では,フェデレーション学習のためのロバストな量認識アグリゲーションアルゴリズムであるFedRAを提案し,局所的なデータ量を認識してアグリゲーションを行う。
論文 参考訳(メタデータ) (2022-05-22T15:13:23Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Towards Understanding Quality Challenges of the Federated Learning: A
First Look from the Lens of Robustness [4.822471415125479]
Federated Learning(FL)は、すべての参加者のデータセット全体をトレーニングに活用しながら、ユーザのデータのプライバシを保護することを目的としている。
FLは依然として攻撃やビザンチン障害などの品質問題に悩まされる傾向にある。
本報告では,攻撃・故障発生におけるSOTA(State-of-the-art)の強靭なFL手法の有効性について検討する。
論文 参考訳(メタデータ) (2022-01-05T02:06:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。