論文の概要: Intelligent Client Selection for Federated Learning using Cellular
Automata
- arxiv url: http://arxiv.org/abs/2310.00627v2
- Date: Wed, 18 Oct 2023 09:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 19:20:27.284448
- Title: Intelligent Client Selection for Federated Learning using Cellular
Automata
- Title(参考訳): セルオートマトンを用いた連合学習のための知的クライアント選択
- Authors: Nikolaos Pavlidis, Vasileios Perifanis, Theodoros Panagiotis
Chatzinikolaou, Georgios Ch. Sirakoulis, Pavlos S. Efraimidis
- Abstract要約: FLは、輸送、通信、医療など、さまざまな現実世界のアプリケーションにおいて、プライバシーの強化とレイテンシーのための有望なソリューションとして登場した。
本稿では,新しいクライアント選択アルゴリズムとして,セルラーオートマトンに基づくクライアント選択(CA-CS)を提案する。
この結果から,CA-CSは高遅延フェデレーションクライアントを効果的に回避しつつ,ランダム選択手法に匹敵する精度を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 0.5849783371898033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has emerged as a promising solution for
privacy-enhancement and latency minimization in various real-world
applications, such as transportation, communications, and healthcare. FL
endeavors to bring Machine Learning (ML) down to the edge by harnessing data
from million of devices and IoT sensors, thus enabling rapid responses to
dynamic environments and yielding highly personalized results. However, the
increased amount of sensors across diverse applications poses challenges in
terms of communication and resource allocation, hindering the participation of
all devices in the federated process and prompting the need for effective FL
client selection. To address this issue, we propose Cellular Automaton-based
Client Selection (CA-CS), a novel client selection algorithm, which leverages
Cellular Automata (CA) as models to effectively capture spatio-temporal changes
in a fast-evolving environment. CA-CS considers the computational resources and
communication capacity of each participating client, while also accounting for
inter-client interactions between neighbors during the client selection
process, enabling intelligent client selection for online FL processes on data
streams that closely resemble real-world scenarios. In this paper, we present a
thorough evaluation of the proposed CA-CS algorithm using MNIST and CIFAR-10
datasets, while making a direct comparison against a uniformly random client
selection scheme. Our results demonstrate that CA-CS achieves comparable
accuracy to the random selection approach, while effectively avoiding
high-latency clients.
- Abstract(参考訳): Federated Learning(FL)は、輸送、通信、医療など、さまざまな現実のアプリケーションにおいて、プライバシの強化とレイテンシの最小化のための有望なソリューションとして登場した。
FLは、数百万のデバイスとIoTセンサからのデータを活用することで、マシンラーニング(ML)をエッジに持ち込もうとしているため、動的環境への迅速な応答と、高度にパーソナライズされた結果が得られる。
しかし、多様なアプリケーションにまたがるセンサの増加は、コミュニケーションやリソース割り当ての面での課題を招き、すべてのデバイスがフェデレーションプロセスに参加するのを妨げ、効果的なFLクライアント選択の必要性を喚起する。
本稿では, 高速進化環境における時空間変化を効果的に捉えるモデルとして, セルラーオートマタ(CA)を利用した新しいクライアント選択アルゴリズムであるCellular Automaton-based Client Selection (CA-CS)を提案する。
ca-csは、各クライアントの計算資源と通信能力を考慮しつつ、クライアント選択プロセス中のクライアント間インタラクションを考慮し、実世界のシナリオに非常に近いデータストリーム上のオンラインflプロセスに対するインテリジェントなクライアント選択を可能にする。
本稿では,mnistとcifar-10のデータセットを用いたca-csアルゴリズムの徹底的な評価を行い,ランダムなクライアント選択方式と直接比較する。
その結果,CA-CSは高遅延クライアントを効果的に回避しつつ,ランダム選択手法に匹敵する精度を達成できることを示した。
関連論文リスト
- Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning [51.560590617691005]
各コホートから「より多くのジュースを抽出できるかどうか」を単一の通信ラウンドでできることよりも検討する。
本手法は,デバイス間通信におけるFLモデルのトレーニングに必要な通信コストを最大74%削減する。
論文 参考訳(メタデータ) (2024-06-03T08:48:49Z) - Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
本稿では,クライアントの完全参加によって達成されるパフォーマンスをエミュレートする新しいクライアント選択戦略を提案する。
1ラウンドで、クライアントサブセットとフルクライアントセット間の勾配空間推定誤差を最小化し、クライアントを選択する。
複数ラウンド選択において、類似したデータ分布を持つクライアントが選択される頻度に類似することを保証する、新しい個性制約を導入する。
論文 参考訳(メタデータ) (2024-05-22T12:27:24Z) - Greedy Shapley Client Selection for Communication-Efficient Federated
Learning [32.38170282930876]
フェデレートラーニング(FL)のための標準的なクライアント選択アルゴリズムは、しばしばバイアスがなく、クライアントのランダムサンプリングが一様である。
私たちは、各通信ラウンドで最も貢献するクライアントを特定し、優しく選択する、バイアスのあるクライアント選択戦略であるGreedyFedを開発します。
複数の実世界のデータセット上のさまざまなクライアント選択戦略と比較して、GreedyFedは、タイミング制約の下で高い精度で高速で安定した収束を示す。
論文 参考訳(メタデータ) (2023-12-14T16:44:38Z) - Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning [14.866327821524854]
HiCS-FLはサーバがクライアントの出力層を更新してクライアントデータの統計的不均一性を推定する新しいクライアント選択手法である。
非IID設定では、HiCS-FLは最先端のFLクライアント選択方式よりも高速な収束を実現する。
論文 参考訳(メタデータ) (2023-09-30T00:29:30Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Adaptive Control of Client Selection and Gradient Compression for
Efficient Federated Learning [28.185096784982544]
フェデレートラーニング(FL)は、複数のクライアントがローカルデータを公開せずに協調的にモデルを訓練することを可能にする。
我々はFedCGと呼ばれる不均一なFLフレームワークを提案し、適応的なクライアント選択と勾配圧縮を行う。
実世界のプロトタイプとシミュレーションの両方の実験により、FedCGは他の方法と比較して最大5.3$times$ Speedupを提供できることが示された。
論文 参考訳(メタデータ) (2022-12-19T14:19:07Z) - ON-DEMAND-FL: A Dynamic and Efficient Multi-Criteria Federated Learning
Client Deployment Scheme [37.099990745974196]
フェデレート学習のためのクライアントデプロイメントアプローチであるOn-Demand-FLを導入する。
私たちはDockerのようなコンテナ技術を使って効率的な環境を構築しています。
遺伝的アルゴリズム(GA)は多目的最適化問題を解決するために用いられる。
論文 参考訳(メタデータ) (2022-11-05T13:41:19Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z) - Budgeted Online Selection of Candidate IoT Clients to Participate in
Federated Learning [33.742677763076]
フェデレートラーニング(FL)は、モデルパラメータがクライアントデータの代わりに交換されるアーキテクチャである。
FLは、コミュニケーションラウンドを通じてクライアントと通信することで、グローバルモデルをトレーニングする。
最適な候補クライアントとIoTクライアントアラームアプリケーションを見つけるために,オンラインステートフルFLを提案する。
論文 参考訳(メタデータ) (2020-11-16T06:32:31Z) - Multi-Armed Bandit Based Client Scheduling for Federated Learning [91.91224642616882]
統合学習(FL)は、通信オーバーヘッドの低減やデータのプライバシの保護など、ユビキタスな特性を特徴とする。
FLの各通信ラウンドでは、クライアントは自身のデータに基づいてローカルモデルを更新し、無線チャネル経由でローカル更新をアップロードする。
本研究は、無線チャネルの状態情報やクライアントの統計的特性を知ることなく、FLにおけるオンラインクライアントスケジューリング(CS)のためのマルチアームバンディットベースのフレームワークを提供する。
論文 参考訳(メタデータ) (2020-07-05T12:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。