A primal-dual perspective for distributed TD-learning
- URL: http://arxiv.org/abs/2310.00638v1
- Date: Sun, 1 Oct 2023 10:38:46 GMT
- Title: A primal-dual perspective for distributed TD-learning
- Authors: Han-Dong Lim, Donghwan Lee
- Abstract summary: The goal of this paper is to investigate distributed temporal difference (TD) learning for a networked multi-agent Markov decision process.
The proposed approach is based on distributed optimization algorithms, which can be interpreted as primal-dual Ordinary differential equation (ODE) dynamics subject to null-space constraints.
- Score: 7.871657629581001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of this paper is to investigate distributed temporal difference (TD)
learning for a networked multi-agent Markov decision process. The proposed
approach is based on distributed optimization algorithms, which can be
interpreted as primal-dual Ordinary differential equation (ODE) dynamics
subject to null-space constraints. Based on the exponential convergence
behavior of the primal-dual ODE dynamics subject to null-space constraints, we
examine the behavior of the final iterate in various distributed TD-learning
scenarios, considering both constant and diminishing step-sizes and
incorporating both i.i.d. and Markovian observation models. Unlike existing
methods, the proposed algorithm does not require the assumption that the
underlying communication network structure is characterized by a doubly
stochastic matrix.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - A deep implicit-explicit minimizing movement method for option pricing
in jump-diffusion models [0.0]
We develop a novel deep learning approach for pricing European basket options written on assets that follow jump-diffusion dynamics.
The option pricing problem is formulated as a partial integro-differential equation, which is approximated via a new implicit-explicit minimizing movement time-stepping approach.
arXiv Detail & Related papers (2024-01-12T18:21:01Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Distributed Linear Regression with Compositional Covariates [5.085889377571319]
We focus on the distributed sparse penalized linear log-contrast model in massive compositional data.
Two distributed optimization techniques are proposed for solving the two different constrained convex optimization problems.
In the decentralized topology, we introduce a distributed coordinate-wise descent algorithm for obtaining a communication-efficient regularized estimation.
arXiv Detail & Related papers (2023-10-21T11:09:37Z) - Variational Density Propagation Continual Learning [0.0]
Deep Neural Networks (DNNs) deployed to the real world are regularly subject to out-of-distribution (OoD) data.
This paper proposes a framework for adapting to data distribution drift modeled by benchmark Continual Learning datasets.
arXiv Detail & Related papers (2023-08-22T21:51:39Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Galerkin Neural Networks: A Framework for Approximating Variational
Equations with Error Control [0.0]
We present a new approach to using neural networks to approximate the solutions of variational equations.
We use a sequence of finite-dimensional subspaces whose basis functions are realizations of a sequence of neural networks.
arXiv Detail & Related papers (2021-05-28T20:25:40Z) - Distributed Value Function Approximation for Collaborative Multi-Agent
Reinforcement Learning [2.7071541526963805]
We propose several novel distributed gradient-based temporal difference algorithms for multi-agent off-policy learning.
The proposed algorithms differ by their form, definition of eligibility traces, selection of time scales and the way of incorporating consensus iterations.
It is demonstrated how the adopted methodology can be applied to temporal-difference algorithms under weaker information structure constraints.
arXiv Detail & Related papers (2020-06-18T11:46:09Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.