Streamlining Attack Tree Generation: A Fragment-Based Approach
- URL: http://arxiv.org/abs/2310.00654v1
- Date: Sun, 1 Oct 2023 12:41:38 GMT
- Title: Streamlining Attack Tree Generation: A Fragment-Based Approach
- Authors: Irdin Pekaric, Markus Frick, Jubril Gbolahan Adigun, Raffaela Groner, Thomas Witte, Alexander Raschke, Michael Felderer, Matthias Tichy,
- Abstract summary: We present a novel fragment-based attack graph generation approach that utilizes information from publicly available information security databases.
We also propose a domain-specific language for attack modeling, which we employ in the proposed attack graph generation approach.
- Score: 39.157069600312774
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Attack graphs are a tool for analyzing security vulnerabilities that capture different and prospective attacks on a system. As a threat modeling tool, it shows possible paths that an attacker can exploit to achieve a particular goal. However, due to the large number of vulnerabilities that are published on a daily basis, they have the potential to rapidly expand in size. Consequently, this necessitates a significant amount of resources to generate attack graphs. In addition, generating composited attack models for complex systems such as self-adaptive or AI is very difficult due to their nature to continuously change. In this paper, we present a novel fragment-based attack graph generation approach that utilizes information from publicly available information security databases. Furthermore, we also propose a domain-specific language for attack modeling, which we employ in the proposed attack graph generation approach. Finally, we present a demonstrator example showcasing the attack generator's capability to replicate a verified attack chain, as previously confirmed by security experts.
Related papers
- Using Retriever Augmented Large Language Models for Attack Graph Generation [0.7619404259039284]
This paper explores the approach of leveraging large language models (LLMs) to automate the generation of attack graphs.
It shows how to utilize Common Vulnerabilities and Exposures (CommonLLMs) to create attack graphs from threat reports.
arXiv Detail & Related papers (2024-08-11T19:59:08Z) - Attack Tree Generation via Process Mining [0.0]
This work aims to provide a method for the automatic generation of Attack Trees from attack logs.
The main original feature of our approach is the use of Process Mining algorithms to synthesize Attack Trees.
Our approach is supported by a prototype that, apart from the derivation and translation of the model, provides the user with an Attack Tree in the RisQFLan format.
arXiv Detail & Related papers (2024-02-19T10:55:49Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models [54.19289900203071]
The rise in popularity of text-to-image generative artificial intelligence has attracted widespread public interest.
We demonstrate that this technology can be attacked to generate content that subtly manipulates its users.
We propose a Backdoor Attack on text-to-image Generative Models (BAGM)
Our attack is the first to target three popular text-to-image generative models across three stages of the generative process.
arXiv Detail & Related papers (2023-07-31T08:34:24Z) - BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly
Detection [20.666171188140503]
Graph-based Anomaly Detection (GAD) is becoming prevalent due to the powerful representation abilities of graphs.
These GAD tools expose a new attacking surface, ironically due to their unique advantage of being able to exploit the relations among data.
In this paper, we exploit this vulnerability by designing a new type of targeted structural poisoning attacks to a representative regression-based GAD system OddBall.
arXiv Detail & Related papers (2021-06-18T08:20:23Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - GraphAttacker: A General Multi-Task GraphAttack Framework [4.218118583619758]
Graph Neural Networks (GNNs) have been successfully exploited in graph analysis tasks in many real-world applications.
adversarial samples generated by attackers, which achieved great attack performance with almost imperceptible perturbations.
We propose GraphAttacker, a novel generic graph attack framework that can flexibly adjust the structures and the attack strategies according to the graph analysis tasks.
arXiv Detail & Related papers (2021-01-18T03:06:41Z) - Subpopulation Data Poisoning Attacks [18.830579299974072]
Poisoning attacks against machine learning induce adversarial modification of data used by a machine learning algorithm to selectively change its output when it is deployed.
We introduce a novel data poisoning attack called a emphsubpopulation attack, which is particularly relevant when datasets are large and diverse.
We design a modular framework for subpopulation attacks, instantiate it with different building blocks, and show that the attacks are effective for a variety of datasets and machine learning models.
arXiv Detail & Related papers (2020-06-24T20:20:52Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.