論文の概要: OceanNet: A principled neural operator-based digital twin for regional
oceans
- arxiv url: http://arxiv.org/abs/2310.00813v1
- Date: Sun, 1 Oct 2023 23:06:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 01:35:24.596247
- Title: OceanNet: A principled neural operator-based digital twin for regional
oceans
- Title(参考訳): OceanNet: 地域海洋のためのニューラルネットワークベースのディジタルツイン
- Authors: Ashesh Chattopadhyay, Michael Gray, Tianning Wu, Anna B. Lowe, and
Ruoying He
- Abstract要約: 本研究は、海洋循環のための原理的ニューラルオペレーターベースのデジタルツインであるOceanNetを紹介する。
オーシャンネットは北西大西洋西部境界流(ガルフストリーム)に適用される
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While data-driven approaches demonstrate great potential in atmospheric
modeling and weather forecasting, ocean modeling poses distinct challenges due
to complex bathymetry, land, vertical structure, and flow non-linearity. This
study introduces OceanNet, a principled neural operator-based digital twin for
ocean circulation. OceanNet uses a Fourier neural operator and
predictor-evaluate-corrector integration scheme to mitigate autoregressive
error growth and enhance stability over extended time scales. A spectral
regularizer counteracts spectral bias at smaller scales. OceanNet is applied to
the northwest Atlantic Ocean western boundary current (the Gulf Stream),
focusing on the task of seasonal prediction for Loop Current eddies and the
Gulf Stream meander. Trained using historical sea surface height (SSH) data,
OceanNet demonstrates competitive forecast skill by outperforming SSH
predictions by an uncoupled, state-of-the-art dynamical ocean model forecast,
reducing computation by 500,000 times. These accomplishments demonstrate the
potential of physics-inspired deep neural operators as cost-effective
alternatives to high-resolution numerical ocean models.
- Abstract(参考訳): データ駆動アプローチは、大気モデリングと気象予報において大きな可能性を示しているが、海洋モデリングは複雑な水温計、陸地、垂直構造、流れの非線形性によって異なる課題をもたらす。
本研究は,海洋循環のためのニューラルネットワークを用いたディジタルツインであるoceannetを紹介する。
oceannetは、フーリエニューラルネットワークと予測-評価-補正統合スキームを使用して、自己回帰的エラー成長を緩和し、長期的スケールでの安定性を高める。
スペクトル正規化器は、小さなスケールでスペクトルバイアスに対処する。
オーシャンネットは北西大西洋西部境界流(メキシコ湾流)に適用され、ループ電流エディスとメキシコ湾流蛇行の季節予測のタスクに焦点を当てている。
過去の海面高度(SSH)データを用いてトレーニングされたOceanNetは、未結合で最先端の動的海洋モデル予測によってSSH予測を上回り、計算を50,000倍削減することで、競争力のある予測技術を示す。
これらの成果は、高分解能数値海洋モデルに代わるコスト効率の高い代替手段として、物理学に触発された深層ニューラルネットワークの可能性を示している。
関連論文リスト
- Regional Ocean Forecasting with Hierarchical Graph Neural Networks [1.4146420810689422]
我々は、高解像度の中距離海洋予測用に設計されたニューラルネットワークであるSeaCastを紹介する。
SeaCastはグラフベースのフレームワークを使用して、海洋グリッドの複雑な幾何学を処理し、地域の海洋環境に合わせて外部の強制データを統合する。
コペルニクス海洋局が提供した地中海の運用数値モデルを用いて,高空間分解能実験により本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-10-15T17:34:50Z) - Data-driven Global Ocean Modeling for Seasonal to Decadal Prediction [39.7461632644892]
ORCA-DLは,海洋循環の季節的・季節的な予測を行う最初のデータ駆動型3次元海洋モデルである。
三次元海洋力学を正確にシミュレートし、最先端の力学モデルより優れている。
ケイデンスの時間スケールで海洋力学を安定にエミュレートし、巧妙なデケイデンスの予測や気候予測にもその可能性を示す。
論文 参考訳(メタデータ) (2024-05-24T10:23:17Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Surrogate Neural Networks to Estimate Parametric Sensitivity of Ocean
Models [2.956865819041394]
海洋プロセスはハリケーンや干ばつなどの現象に影響を与える。
理想的な海洋モデルでは、摂動パラメータアンサンブルデータと訓練された代理ニューラルネットワークモデルを生成した。
ニューラルサロゲートは1ステップの前進ダイナミクスを正確に予測し、パラメトリック感度を計算した。
論文 参考訳(メタデータ) (2023-11-10T16:37:43Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Evaluation of Deep Neural Operator Models toward Ocean Forecasting [0.3774866290142281]
ディープ・ニューラル・オペレーター・モデルは、古典的な流体の流れと現実的な海洋力学のシミュレーションを予測することができる。
我々はまず,シリンダーを過ぎる2次元流体の模擬実験で,このような深部ニューラルネットワークモデルの能力を評価する。
次に,中部大西洋帯およびマサチューセッツ湾における海洋表層循環予測への応用について検討した。
論文 参考訳(メタデータ) (2023-08-22T22:38:54Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Synergy between Observation Systems Oceanic in Turbulent Regions [0.0]
海洋ダイナミクスは、複雑な気候現象における海洋の役割を決定する上での公理の源である。
現在の観測システムは3次元海洋データに十分な統計的精度を達成するのに限界がある。
湾岸流と黒潮の延長流における海洋ダイナミクスのモデル化において,潜流クラス回帰と深層回帰ニューラルネットワークを探索するデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T22:52:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。