Online Sensitivity Optimization in Differentially Private Learning
- URL: http://arxiv.org/abs/2310.00829v2
- Date: Mon, 8 Jan 2024 14:51:59 GMT
- Title: Online Sensitivity Optimization in Differentially Private Learning
- Authors: Filippo Galli and Catuscia Palamidessi and Tommaso Cucinotta
- Abstract summary: We present a novel approach to dynamically optimize the clipping threshold.
We treat this threshold as an additional learnable parameter, establishing a clean relationship between the threshold and the cost function.
Our method is thoroughly assessed against alternative fixed and adaptive strategies across diverse datasets, tasks, model dimensions, and privacy levels.
- Score: 8.12606646175019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training differentially private machine learning models requires constraining
an individual's contribution to the optimization process. This is achieved by
clipping the $2$-norm of their gradient at a predetermined threshold prior to
averaging and batch sanitization. This selection adversely influences
optimization in two opposing ways: it either exacerbates the bias due to
excessive clipping at lower values, or augments sanitization noise at higher
values. The choice significantly hinges on factors such as the dataset, model
architecture, and even varies within the same optimization, demanding
meticulous tuning usually accomplished through a grid search. In order to
circumvent the privacy expenses incurred in hyperparameter tuning, we present a
novel approach to dynamically optimize the clipping threshold. We treat this
threshold as an additional learnable parameter, establishing a clean
relationship between the threshold and the cost function. This allows us to
optimize the former with gradient descent, with minimal repercussions on the
overall privacy analysis. Our method is thoroughly assessed against alternative
fixed and adaptive strategies across diverse datasets, tasks, model dimensions,
and privacy levels. Our results indicate that it performs comparably or better
in the evaluated scenarios, given the same privacy requirements.
Related papers
- Privacy without Noisy Gradients: Slicing Mechanism for Generative Model Training [10.229653770070202]
Training generative models with differential privacy (DP) typically involves injecting noise into gradient updates or adapting the discriminator's training procedure.
We consider the slicing privacy mechanism that injects noise into random low-dimensional projections of the private data.
We present a kernel-based estimator for this divergence, circumventing the need for adversarial training.
arXiv Detail & Related papers (2024-10-25T19:32:58Z) - DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction [57.83978915843095]
This paper introduces DiSK, a novel framework designed to significantly enhance the performance of differentially private gradients.
To ensure practicality for large-scale training, we simplify the Kalman filtering process, minimizing its memory and computational demands.
arXiv Detail & Related papers (2024-10-04T19:30:39Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
We introduce a new framework based on the empirical probability density function of the loss's magnitude, termed the "gradient magnitude histogram"
We propose a novel algorithm using gradient magnitude histograms to automatically estimate a refined and accurate search space for the optimal safeguard.
arXiv Detail & Related papers (2023-11-20T04:34:19Z) - Differentially Private Learning with Per-Sample Adaptive Clipping [8.401653565794353]
We propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function.
We show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.
arXiv Detail & Related papers (2022-12-01T07:26:49Z) - An automatic differentiation system for the age of differential privacy [65.35244647521989]
Tritium is an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML)
We introduce Tritium, an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML)
arXiv Detail & Related papers (2021-09-22T08:07:42Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.