Self-Steering Optimization: Autonomous Preference Optimization for Large Language Models
- URL: http://arxiv.org/abs/2410.17131v2
- Date: Wed, 11 Jun 2025 05:43:28 GMT
- Title: Self-Steering Optimization: Autonomous Preference Optimization for Large Language Models
- Authors: Hao Xiang, Bowen Yu, Hongyu Lin, Keming Lu, Yaojie Lu, Xianpei Han, Ben He, Le Sun, Jingren Zhou, Junyang Lin,
- Abstract summary: We present Self-Steering Optimization ($SSO$), an algorithm that autonomously generates high-quality preference data.<n>$SSO$ employs a specialized optimization objective to build a data generator from the policy model itself, which is used to produce accurate and on-policy data.<n>Our evaluation shows that $SSO$ consistently outperforms baselines in human preference alignment and reward optimization.
- Score: 79.84205827056907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key to effective alignment lies in high-quality preference data. Recent research has focused on automated alignment, which involves developing alignment systems with minimal human intervention. However, prior research has predominantly focused on developing data generation methods, while insufficient attention has been paid to quality control mechanisms, which often produce inaccurate and unhelpful data, leading to unpredictable benefits during iterative optimization. In this paper, we present Self-Steering Optimization ($SSO$), an algorithm that autonomously generates high-quality preference data, eliminating manual annotation requirements. $SSO$ employs a specialized optimization objective to build a data generator from the policy model itself, which is used to produce accurate and on-policy data. We demonstrate $SSO$'s effectiveness through comprehensive experiments on two series of models: Llama 3 and Qwen 2. Our evaluation across diverse benchmarks shows that $SSO$ consistently outperforms baselines in human preference alignment and reward optimization. Further analysis validates $SSO$ as a scalable framework for preference optimization, benefiting the advancement in automated alignment techniques.
Related papers
- SGPO: Self-Generated Preference Optimization based on Self-Improver [6.528083376369728]
Large language models (LLMs) require alignment to human preferences for practical and reliable deployment.<n>We propose Self-Generated Preference Optimization based on Self-Improver (SGPO)<n>The improver refines responses from a policy model to self-generate preference data for direct preference optimization (DPO) of the policy model.<n> Experimental results on AlpacaEval 2.0 and Arena-Hard show that the proposed SGPO significantly improves performance over DPO and baseline self-improving methods.
arXiv Detail & Related papers (2025-07-27T08:55:40Z) - Leveraging Robust Optimization for LLM Alignment under Distribution Shifts [52.983390470606146]
Preference alignment methods are increasingly critical for steering large language models to generate outputs consistent with human values.<n>We propose a novel distribution-aware optimization framework that improves preference alignment despite such shifts.
arXiv Detail & Related papers (2025-04-08T09:14:38Z) - Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.<n>In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.<n> DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - Best Policy Learning from Trajectory Preference Feedback [15.799929216215672]
We address the problem of best policy identification in preference-based reinforcement learning (PbRL)
We propose Posterior Sampling for Preference Learning ($mathsfPSPL$), a novel algorithm inspired by Top-Two Thompson Sampling.
We provide the first theoretical guarantees for PbRL in this setting, establishing an upper bound on the simple Bayesian regret.
arXiv Detail & Related papers (2025-01-31T03:55:10Z) - Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - Towards Improved Preference Optimization Pipeline: from Data Generation to Budget-Controlled Regularization [14.50339880957898]
We aim to improve the preference optimization pipeline by taking a closer look at preference data generation and training regularization techniques.
For preference data generation, we propose an iterative pairwise ranking mechanism that derives preference ranking of completions using pairwise comparison signals.
For training regularization, we observe that preference optimization tends to achieve better convergence when the LLM predicted likelihood of preferred samples gets slightly reduced.
arXiv Detail & Related papers (2024-11-07T23:03:11Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Just Say What You Want: Only-prompting Self-rewarding Online Preference Optimization [64.34767799614328]
Current self-rewarding approaches rely heavily on the discriminator's judgment capabilities.
We propose a novel, only-prompting self-rewarding online algorithm that generates preference datasets without relying on judgment capabilities.
arXiv Detail & Related papers (2024-09-26T04:41:08Z) - TSO: Self-Training with Scaled Preference Optimization [14.3799656174528]
We propose TSO, a framework for preference optimization that conducts self-training preference learning without training an additional reward model.
TSO enhances the diversity of responses by constructing a model matrix and incorporating human preference responses.
Experimental results demonstrate that TSO outperforms existing mainstream methods on various alignment evaluation benchmarks.
arXiv Detail & Related papers (2024-08-31T05:37:01Z) - Preference Consistency Matters: Enhancing Preference Learning in Language Models with Automated Self-Curation of Training Corpora [4.008122785948581]
We introduce a self-curation method that preprocesses annotated datasets by leveraging proxy models trained directly on them.
Our method enhances preference learning by automatically detecting and selecting consistent annotations.
arXiv Detail & Related papers (2024-08-23T02:27:14Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Model-Free Robust $φ$-Divergence Reinforcement Learning Using Both Offline and Online Data [16.995406965407003]
We propose a model-free algorithm called Robust $phi$-regularized fitted Q-iteration (RPQ) for learning an $epsilon$-optimal robust policy.
We also introduce the hybrid robust $phi$-regularized reinforcement learning framework to learn an optimal robust policy using both historical data and online sampling.
arXiv Detail & Related papers (2024-05-08T23:52:37Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
Linear alignment is a novel algorithm that aligns language models with human preferences in one single inference step.
Experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment.
arXiv Detail & Related papers (2024-01-21T10:46:23Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
This paper considers the problem of offline optimization, where the objective function is unknown except for a collection of offline" data examples.
Instead of learning and then optimizing the unknown objective function, we take on a less intuitive but more direct view that optimization can be thought of as a process of sampling from a generative model.
arXiv Detail & Related papers (2024-01-04T01:32:50Z) - Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization [16.57676001669012]
In data-driven optimization, the sample performance of the obtained decision typically incurs an optimistic bias against the true performance.<n>Common techniques to correct this bias, such as cross-validation, require repeatedly solving additional optimization problems and are therefore expensive.<n>We develop a general bias correction approach that directly approximates the first-order bias and does not require solving any additional optimization problems.
arXiv Detail & Related papers (2023-06-16T07:07:58Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Robust Policy Search for Robot Navigation [3.130722489512822]
Complex robot navigation and control problems can be framed as policy search problems.<n>In this work, we incorporate both robust optimization and statistical robustness, showing that both types of robustness are synergistic.<n>We present results in several benchmarks and robot tasks to have convergence guarantees and improved performance even with surrogate modeling errors.
arXiv Detail & Related papers (2020-03-02T16:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.