論文の概要: Natural Language Models for Data Visualization Utilizing nvBench Dataset
- arxiv url: http://arxiv.org/abs/2310.00832v1
- Date: Mon, 2 Oct 2023 00:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 01:39:24.975508
- Title: Natural Language Models for Data Visualization Utilizing nvBench Dataset
- Title(参考訳): nvBenchデータセットを用いたデータ可視化のための自然言語モデル
- Authors: Shuo Wang and Carlos Crespo-Quinones
- Abstract要約: 自然言語翻訳モデルを構築し、Vega Zeroと呼ばれる言語でデータと視覚化クエリの簡易バージョンを構築する。
本稿では,シーケンシャルトランスフォーマーに基づく機械学習モデルアーキテクチャの設計と性能について検討する。
- 参考スコア(独自算出の注目度): 6.996262696260261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Translation of natural language into syntactically correct commands for data
visualization is an important application of natural language models and could
be leveraged to many different tasks. A closely related effort is the task of
translating natural languages into SQL queries, which in turn could be
translated into visualization with additional information from the natural
language query supplied\cite{Zhong:2017qr}. Contributing to the progress in
this area of research, we built natural language translation models to
construct simplified versions of data and visualization queries in a language
called Vega Zero. In this paper, we explore the design and performance of these
sequence to sequence transformer based machine learning model architectures
using large language models such as BERT as encoders to predict visualization
commands from natural language queries, as well as apply available T5 sequence
to sequence models to the problem for comparison.
- Abstract(参考訳): データ視覚化のための構文的に正しいコマンドへの自然言語の変換は、自然言語モデルの重要な応用であり、様々なタスクに活用できる。
密接に関連する取り組みとして、自然言語をSQLクエリに翻訳する作業がある。
この研究の進展に寄与するため,我々は自然言語翻訳モデルを構築し,vega zeroと呼ばれる言語でデータの簡易バージョンと可視化クエリを構築した。
本稿では、自然言語クエリから可視化コマンドを予測するためにbertなどの大規模言語モデルを用いて、シーケンストランスフォーマティブに基づく機械学習モデルアーキテクチャの設計と性能について検討するとともに、利用可能なt5シーケンスをシーケンスモデルに適用して比較を行う。
関連論文リスト
- Prompt4Vis: Prompting Large Language Models with Example Mining and
Schema Filtering for Tabular Data Visualization [13.425454489560376]
本稿では,自然言語からデータビジュアライゼーションクエリを生成するフレームワークであるPrompt4Visを紹介する。
データビジュアライゼーションクエリを生成するためのテキスト・ツー・ビジュアリーに、インコンテキスト・ラーニングが導入される。
Prompt4Visは最先端(SOTA)のRGVisNetを約35.9%、開発とテストセットで71.3%上回っている。
論文 参考訳(メタデータ) (2024-01-29T10:23:47Z) - Natural Language Interfaces for Tabular Data Querying and Visualization: A Survey [30.836162812277085]
大規模言語モデル(LLM)の台頭はこの分野をさらに進歩させ、自然言語処理技術のための新たな道を開いた。
本稿では,これらのインターフェースの基礎となる基本概念と技術を紹介し,セマンティック解析に特に重点を置いている。
この中には、LSMの影響を深く掘り下げ、その強み、制限、将来の改善の可能性を強調している。
論文 参考訳(メタデータ) (2023-10-27T05:01:20Z) - Constructing Multilingual Code Search Dataset Using Neural Machine
Translation [48.32329232202801]
我々は4つの自然言語および4つのプログラミング言語で多言語コード検索データセットを作成する。
その結果,すべての自然言語およびプログラミング言語データで事前学習したモデルが,ほとんどのケースで最善を尽くしていることがわかった。
論文 参考訳(メタデータ) (2023-06-27T16:42:36Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
事前学習された言語モデルは、自然言語処理とプログラム理解の両方において素晴らしい性能を示している。
本研究では,プログラムの構文構造を特定するための,最先端の事前訓練モデルの最初の徹底的なベンチマークを行う。
この結果から,既存のプログラミング言語の事前学習手法の限界が指摘され,構文構造をモデル化することの重要性が示唆された。
論文 参考訳(メタデータ) (2022-10-26T04:47:18Z) - XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for
Cross-lingual Text-to-SQL Semantic Parsing [70.40401197026925]
大規模言語モデルを用いたインコンテキスト学習は、最近セマンティック解析タスクの驚くべき結果を示している。
この研究は、あるクエリに対して関連する英語の例を検索する学習を行うXRICLフレームワークを導入している。
また、大規模言語モデルの翻訳プロセスを容易にするために、対象言語に対するグローバルな翻訳例も含んでいる。
論文 参考訳(メタデータ) (2022-10-25T01:33:49Z) - Explicitly Modeling Syntax in Language Models with Incremental Parsing
and a Dynamic Oracle [88.65264818967489]
我々は新しい構文認識型言語モデル、Syntactic Ordered Memory (SOM)を提案する。
モデルは、構造をインクリメンタルにモデル化し、標準言語モデルの条件付き確率設定を維持する。
実験により、SOMは言語モデリング、インクリメンタル解析、構文一般化テストにおいて強力な結果が得られることが示された。
論文 参考訳(メタデータ) (2020-10-21T17:39:15Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z) - What the [MASK]? Making Sense of Language-Specific BERT Models [39.54532211263058]
本稿では,言語固有のBERTモデルにおける技術の現状について述べる。
本研究の目的は,言語固有のBERTモデルとmBERTモデルとの共通点と相違点について概説することである。
論文 参考訳(メタデータ) (2020-03-05T20:42:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。