TRAM: Benchmarking Temporal Reasoning for Large Language Models
- URL: http://arxiv.org/abs/2310.00835v3
- Date: Fri, 31 May 2024 15:36:09 GMT
- Title: TRAM: Benchmarking Temporal Reasoning for Large Language Models
- Authors: Yuqing Wang, Yun Zhao,
- Abstract summary: We introduce TRAM, a temporal reasoning benchmark composed of ten datasets.
We evaluate popular language models like GPT-4 and Llama2 in zero-shot and few-shot scenarios.
Our findings indicate that the best-performing model lags significantly behind human performance.
- Score: 12.112914393948415
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reasoning about time is essential for understanding the nuances of events described in natural language. Previous research on this topic has been limited in scope, characterized by a lack of standardized benchmarks that would allow for consistent evaluations across different studies. In this paper, we introduce TRAM, a temporal reasoning benchmark composed of ten datasets, encompassing various temporal aspects of events such as order, arithmetic, frequency, and duration, designed to facilitate a comprehensive evaluation of the TeR capabilities of large language models (LLMs). We evaluate popular LLMs like GPT-4 and Llama2 in zero-shot and few-shot scenarios, and establish baselines with BERT-based and domain-specific models. Our findings indicate that the best-performing model lags significantly behind human performance. It is our aspiration that TRAM will spur further progress in enhancing the TeR capabilities of LLMs.
Related papers
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - A Picture is Worth A Thousand Numbers: Enabling LLMs Reason about Time Series via Visualization [38.843506917740115]
We propose TimerBed, the first comprehensive testbed for evaluating large language models' time-series reasoning (TsR) performance.
To address this, we propose a prompt-based solution VL-Time, using visualization-modeled data and language-guided reasoning.
arXiv Detail & Related papers (2024-11-09T00:35:29Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting [16.583730806230644]
This study highlights the key challenges that large language models encounter in the context of time series prediction.
The empirical results indicate that while large language models can perform well in zero-shot forecasting for certain datasets, their predictive accuracy diminishes notably when confronted with diverse time series data and traditional signals.
arXiv Detail & Related papers (2024-08-09T05:13:03Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
We conduct a comprehensive evaluation of Large Language Models (LLMs) for temporal event forecasting.
We find that directly integrating raw texts into the input of LLMs does not enhance zero-shot extrapolation performance.
In contrast, incorporating raw texts in specific complex events and fine-tuning LLMs significantly improves performance.
arXiv Detail & Related papers (2024-07-16T11:58:54Z) - Test of Time: A Benchmark for Evaluating LLMs on Temporal Reasoning [20.066249913943405]
Large language models (LLMs) have showcased remarkable reasoning capabilities, yet they remain susceptible to errors.
We introduce novel synthetic datasets specifically designed to assess LLM temporal reasoning abilities in various scenarios.
Our findings provide valuable insights into the strengths and weaknesses of current LLMs in temporal reasoning tasks.
arXiv Detail & Related papers (2024-06-13T14:31:19Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Can LMs Generalize to Future Data? An Empirical Analysis on Text
Summarization [50.20034493626049]
Recent pre-trained language models (PLMs) achieve promising results in existing abstractive summarization datasets.
Existing summarization benchmarks overlap in time with the standard pre-training corpora and finetuning datasets.
We show that parametric knowledge stored in summarization models significantly affects the faithfulness of the generated summaries on future data.
arXiv Detail & Related papers (2023-05-03T08:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.