Prov2vec: Learning Provenance Graph Representation for Unsupervised APT Detection
- URL: http://arxiv.org/abs/2310.00843v1
- Date: Mon, 2 Oct 2023 01:38:13 GMT
- Title: Prov2vec: Learning Provenance Graph Representation for Unsupervised APT Detection
- Authors: Bibek Bhattarai, H. Howie Huang,
- Abstract summary: It is necessary to detect Advanced Persistent Threats as early in the campaign as possible.
This paper proposes, Prov2Vec, a system for the continuous monitoring of enterprise host's behavior to detect attackers' activities.
- Score: 2.07180164747172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern cyber attackers use advanced zero-day exploits, highly targeted spear phishing, and other social engineering techniques to gain access and also use evasion techniques to maintain a prolonged presence within the victim network while working gradually towards the objective. To minimize the damage, it is necessary to detect these Advanced Persistent Threats as early in the campaign as possible. This paper proposes, Prov2Vec, a system for the continuous monitoring of enterprise host's behavior to detect attackers' activities. It leverages the data provenance graph built using system event logs to get complete visibility into the execution state of an enterprise host and the causal relationship between system entities. It proposes a novel provenance graph kernel to obtain the canonical representation of the system behavior, which is compared against its historical behaviors and that of other hosts to detect the deviation from the normality. These representations are used in several machine learning models to evaluate their ability to capture the underlying behavior of an endpoint host. We have empirically demonstrated that the provenance graph kernel produces a much more compact representation compared to existing methods while improving prediction ability.
Related papers
- PARIS: A Practical, Adaptive Trace-Fetching and Real-Time Malicious Behavior Detection System [6.068607290592521]
We propose adaptive trace fetching, lightweight, real-time malicious behavior detection system.
Specifically, we monitor malicious behavior with Event Tracing for Windows (ETW) and learn to selectively collect maliciousness-related APIs or call stacks.
As a result, we can monitor a wider range of APIs and detect more intricate attack behavior.
arXiv Detail & Related papers (2024-11-02T14:52:04Z) - ORCHID: Streaming Threat Detection over Versioned Provenance Graphs [11.783370157959968]
We present ORCHID, a novel Prov-IDS that performs fine-grained detection of process-level threats over a real time event stream.
ORCHID takes advantage of the unique immutable properties of a versioned provenance graphs to iteratively embed the entire graph in a sequential RNN model.
We evaluate ORCHID on four public datasets, including DARPA TC, to show that ORCHID can provide competitive classification performance.
arXiv Detail & Related papers (2024-08-23T19:44:40Z) - Graph Transductive Defense: a Two-Stage Defense for Graph Membership Inference Attacks [50.19590901147213]
Graph neural networks (GNNs) have become instrumental in diverse real-world applications, offering powerful graph learning capabilities.
GNNs are vulnerable to adversarial attacks, including membership inference attacks (MIA)
This paper proposes an effective two-stage defense, Graph Transductive Defense (GTD), tailored to graph transductive learning characteristics.
arXiv Detail & Related papers (2024-06-12T06:36:37Z) - Efficient Network Representation for GNN-based Intrusion Detection [2.321323878201932]
The last decades have seen a growth in the number of cyber-attacks with severe economic and privacy damages.
We propose a novel network representation as a graph of flows that aims to provide relevant topological information for the intrusion detection task.
We present a Graph Neural Network (GNN) based framework responsible for exploiting the proposed graph structure.
arXiv Detail & Related papers (2023-09-11T16:10:12Z) - Kairos: Practical Intrusion Detection and Investigation using
Whole-system Provenance [4.101641763092759]
Provenance graphs are structured audit logs that describe the history of a system's execution.
We identify four common dimensions that drive the development of provenance-based intrusion detection systems (PIDSes)
We present KAIROS, the first PIDS that simultaneously satisfies the desiderata in all four dimensions.
arXiv Detail & Related papers (2023-08-09T16:04:55Z) - threaTrace: Detecting and Tracing Host-based Threats in Node Level
Through Provenance Graph Learning [29.48927285179188]
Recent studies propose leveraging the rich contextual information in data provenance to detect threats in a host.
We present threaTrace, an anomaly-based detector that detects host-based threats at system entity level without prior knowledge of attack patterns.
arXiv Detail & Related papers (2021-11-08T08:48:26Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
Anomaly detection-based spoof attack detection is a recent development in face Presentation Attack Detection.
In this paper, we present a deep-learning solution for anomaly detection-based spoof attack detection.
The proposed approach benefits from the representation learning power of the CNNs and learns better features for fPAD task.
arXiv Detail & Related papers (2020-07-11T21:20:55Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Adversarial Attack on Community Detection by Hiding Individuals [68.76889102470203]
We focus on black-box attack and aim to hide targeted individuals from the detection of deep graph community detection models.
We propose an iterative learning framework that takes turns to update two modules: one working as the constrained graph generator and the other as the surrogate community detection model.
arXiv Detail & Related papers (2020-01-22T09:50:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.