Deep Fraud Detection on Non-attributed Graph
- URL: http://arxiv.org/abs/2110.01171v1
- Date: Mon, 4 Oct 2021 03:42:09 GMT
- Title: Deep Fraud Detection on Non-attributed Graph
- Authors: Chen Wang, Yingtong Dou, Min Chen, Jia Chen, Zhiwei Liu, Philip S. Yu
- Abstract summary: Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
- Score: 61.636677596161235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fraud detection problems are usually formulated as a machine learning problem
on a graph. Recently, Graph Neural Networks (GNNs) have shown solid performance
on fraud detection. The successes of most previous methods heavily rely on rich
node features and high-fidelity labels. However, labeled data is scarce in
large-scale industrial problems, especially for fraud detection where new
patterns emerge from time to time. Meanwhile, node features are also limited
due to privacy and other constraints. In this paper, two improvements are
proposed: 1) We design a graph transformation method capturing the structural
information to facilitate GNNs on non-attributed fraud graphs. 2) We propose a
novel graph pre-training strategy to leverage more unlabeled data via
contrastive learning. Experiments on a large-scale industrial dataset
demonstrate the effectiveness of the proposed framework for fraud detection.
Related papers
- Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
Unsupervised graph anomaly detection aims at identifying rare patterns that deviate from the majority in a graph without the aid of labels.
Recent advances have utilized Graph Neural Networks (GNNs) to learn effective node representations.
We propose a framework for Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection (G3AD)
arXiv Detail & Related papers (2024-04-25T07:09:05Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - EDoG: Adversarial Edge Detection For Graph Neural Networks [17.969573886307906]
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks.
Recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations.
We propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation.
arXiv Detail & Related papers (2022-12-27T20:42:36Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
We argue that the performance degradation is mainly attributed to the inconsistency between topology and attribute.
We propose a simple and effective method that uses the attention mechanism to adaptively fuse two views.
Our model can significantly outperform stateof-the-art baselines on real-world fraud detection datasets.
arXiv Detail & Related papers (2022-10-22T08:21:49Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.