論文の概要: No Offense Taken: Eliciting Offensiveness from Language Models
- arxiv url: http://arxiv.org/abs/2310.00892v1
- Date: Mon, 2 Oct 2023 04:17:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 23:34:16.188964
- Title: No Offense Taken: Eliciting Offensiveness from Language Models
- Title(参考訳): No Offenseが引き起こす - 言語モデルから攻撃を誘発する
- Authors: Anugya Srivastava and Rahul Ahuja and Rohith Mukku
- Abstract要約: 我々はPerezらによる言語モデル付きレッドチーム言語モデル(2022年)に焦点を当てている。
コントリビューションには、レッドチームによる自動テストケース生成のためのパイプラインの開発が含まれています。
我々は、広くデプロイされたLMから攻撃応答を引き出すのに役立つテストケースのコーパスを生成する。
- 参考スコア(独自算出の注目度): 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work was completed in May 2022.
For safe and reliable deployment of language models in the real world,
testing needs to be robust. This robustness can be characterized by the
difficulty and diversity of the test cases we evaluate these models on.
Limitations in human-in-the-loop test case generation has prompted an advent of
automated test case generation approaches. In particular, we focus on Red
Teaming Language Models with Language Models by Perez et al.(2022). Our
contributions include developing a pipeline for automated test case generation
via red teaming that leverages publicly available smaller language models
(LMs), experimenting with different target LMs and red classifiers, and
generating a corpus of test cases that can help in eliciting offensive
responses from widely deployed LMs and identifying their failure modes.
- Abstract(参考訳): この工事は2022年5月に完了した。
安全で信頼性の高い言語モデルを現実世界にデプロイするためには、テストは堅牢である必要がある。
この堅牢性は、これらのモデルを評価するテストケースの難しさと多様性によって特徴づけられます。
ループ内テストケース生成の制限は、自動テストケース生成アプローチの出現を促している。
特に、perez氏らによる言語モデルとred teaming language modelsにフォーカスしています。
(2022).
私たちのコントリビューションには、公開可能な小さな言語モデル(lms)を活用したred teamingによる自動テストケース生成パイプラインの開発、さまざまなターゲットのlmsとred分類器の実験、広くデプロイされたlmsからの攻撃的応答の排除と障害モードの特定を支援するテストケースのコーパスの生成などが含まれています。
関連論文リスト
- Automatic Generation of Behavioral Test Cases For Natural Language Processing Using Clustering and Prompting [6.938766764201549]
本稿では,大規模言語モデルと統計的手法の力を活用したテストケースの自動開発手法を提案する。
4つの異なる分類アルゴリズムを用いて行動テストプロファイルを分析し、それらのモデルの限界と強みについて議論する。
論文 参考訳(メタデータ) (2024-07-31T21:12:21Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Curiosity-driven Red-teaming for Large Language Models [43.448044721642916]
大規模言語モデル(LLM)は、多くの自然言語アプリケーションにとって大きな可能性を秘めているが、誤ったまたは有害なコンテンツを生成するリスクがある。
ヒューマンテスタにのみ依存することは、高価で時間を要する。
好奇心駆動型レッド・チームリング (CRT) の手法は, 既存の方法と比較して, 有効性を維持したり, 向上させたりしながら, テストケースのカバレッジを向上する。
論文 参考訳(メタデータ) (2024-02-29T18:55:03Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - Bridging the Gap Between Training and Inference of Bayesian Controllable
Language Models [58.990214815032495]
大規模事前学習型言語モデルは、自然言語生成タスクにおいて大きな成功を収めている。
BCLMは制御可能な言語生成において効率的であることが示されている。
本稿では,ミスマッチ問題を少ない計算コストで軽減する制御可能な言語生成のための"Gemini Discriminator"を提案する。
論文 参考訳(メタデータ) (2022-06-11T12:52:32Z) - Red Teaming Language Models with Language Models [8.237872606555383]
言語モデル(LM)は、予測が難しい方法でユーザを傷つける可能性があるため、デプロイできないことが多い。
以前の作業では、ヒューマンアノテータを使ってテストケースを手書きすることで、デプロイ前に有害な振る舞いを特定する。
本研究では、別のLMを用いてテストケース(「レッドチーム」)を生成することにより、標的のLMが有害な振る舞いをするケースを自動的に見つける。
論文 参考訳(メタデータ) (2022-02-07T15:22:17Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
AdvGLUE(Adversarial GLUE)は、様々な種類の敵攻撃の下で、現代の大規模言語モデルの脆弱性を調査し評価するための新しいマルチタスクベンチマークである。
GLUEタスクに14の逆攻撃手法を適用してAdvGLUEを構築する。
テストしたすべての言語モデルとロバストなトレーニングメソッドは、AdvGLUEではパフォーマンスが悪く、スコアは明確な精度よりもはるかに遅れています。
論文 参考訳(メタデータ) (2021-11-04T12:59:55Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
誤情報キャンペーンで使用される可能性があるため、長く一貫性のあるテキストを生成できる大規模な言語モデルが危険であると考える者もいる。
ここでは、仮説テスト問題として大規模言語モデル出力検出を定式化し、テキストを真あるいは生成されたものと分類する。
論文 参考訳(メタデータ) (2020-02-09T19:53:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。