Using Reinforcement Learning to Optimize Responses in Care Processes: A
Case Study on Aggression Incidents
- URL: http://arxiv.org/abs/2310.00981v1
- Date: Mon, 2 Oct 2023 08:43:29 GMT
- Title: Using Reinforcement Learning to Optimize Responses in Care Processes: A
Case Study on Aggression Incidents
- Authors: Bart J. Verhoef and Xixi Lu
- Abstract summary: We train a Markov decision process using event data from a care process.
The goal was to find optimal policies for staff members when clients are displaying any type of aggressive behavior.
Results showed that the policies derived from these algorithms are similar to the most frequent actions currently used.
- Score: 0.8158530638728501
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous studies have used prescriptive process monitoring to find actionable
policies in business processes and conducted case studies in similar domains,
such as the loan application process and the traffic fine process. However,
care processes tend to be more dynamic and complex. For example, at any stage
of a care process, a multitude of actions is possible. In this paper, we follow
the reinforcement approach and train a Markov decision process using event data
from a care process. The goal was to find optimal policies for staff members
when clients are displaying any type of aggressive behavior. We used the
reinforcement learning algorithms Q-learning and SARSA to find optimal
policies. Results showed that the policies derived from these algorithms are
similar to the most frequent actions currently used but provide the staff
members with a few more options in certain situations.
Related papers
- Detecting Undesired Process Behavior by Means of Retrieval Augmented Generation [0.5461938536945723]
We propose an approach that requires neither a dedicated process model nor resource-intensive fine-tuning to detect undesired process behavior.<n>Instead, we use Retrieval Augmented Generation (RAG) to provide an LLM with direct access to a knowledge base.<n>Our evaluation shows that our approach outperforms fine-tuned LLMs in detecting undesired behavior.
arXiv Detail & Related papers (2025-05-28T07:03:46Z) - Process Variant Analysis Across Continuous Features: A Novel Framework [0.0]
This research addresses the challenge of effectively segmenting cases within operational processes.
We present a novel approach employing a sliding window technique combined with the earth mover's distance to detect changes in control flow behavior.
We validate our methodology through a real-life case study in collaboration with UWV, the Dutch employee insurance agency.
arXiv Detail & Related papers (2024-05-06T16:10:13Z) - Recommending the optimal policy by learning to act from temporal data [2.554326189662943]
This paper proposes an AI based approach that learns, by means of Reinforcement (RL)
The approach is validated on real and synthetic datasets and compared with off-policy Deep RL approaches.
The ability of our approach to compare with, and often overcome, Deep RL approaches provides a contribution towards the exploitation of white box RL techniques in scenarios where only temporal execution data are available.
arXiv Detail & Related papers (2023-03-16T10:30:36Z) - Inapplicable Actions Learning for Knowledge Transfer in Reinforcement
Learning [3.194414753332705]
We show that learning inapplicable actions greatly improves the sample efficiency of RL algorithms.
Thanks to the transferability of the knowledge acquired, it can be reused in other tasks and domains to make the learning process more efficient.
arXiv Detail & Related papers (2022-11-28T17:45:39Z) - Detecting Surprising Situations in Event Data [0.45119235878273]
In existing work, it is usually assumed that the set of problematic process instances in which an undesirable outcome occurs is known prior or is easily detectable.
We formulate finding the process enhancement areas as a context-sensitive anomaly/outlier detection problem.
We aim to characterize those situations where process performance/outcome is significantly different from what was expected.
arXiv Detail & Related papers (2022-08-29T11:33:58Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
The paper studies existing methods in this field via a Systematic Literature Review ( SLR)
The SLR provides insights into challenges and areas for future research that could enhance the usefulness and applicability of prescriptive process monitoring methods.
arXiv Detail & Related papers (2021-12-03T08:06:24Z) - Direct Random Search for Fine Tuning of Deep Reinforcement Learning
Policies [5.543220407902113]
We show that a direct random search is very effective at fine-tuning DRL policies by directly optimizing them using deterministic rollouts.
Our results show that this method yields more consistent and higher performing agents on the environments we tested.
arXiv Detail & Related papers (2021-09-12T20:12:46Z) - An Investigation of Replay-based Approaches for Continual Learning [79.0660895390689]
Continual learning (CL) is a major challenge of machine learning (ML) and describes the ability to learn several tasks sequentially without catastrophic forgetting (CF)
Several solution classes have been proposed, of which so-called replay-based approaches seem very promising due to their simplicity and robustness.
We empirically investigate replay-based approaches of continual learning and assess their potential for applications.
arXiv Detail & Related papers (2021-08-15T15:05:02Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO [90.90009491366273]
We study the roots of algorithmic progress in deep policy gradient algorithms through a case study on two popular algorithms.
Specifically, we investigate the consequences of "code-level optimizations:"
Our results show that they (a) are responsible for most of PPO's gain in cumulative reward over TRPO, and (b) fundamentally change how RL methods function.
arXiv Detail & Related papers (2020-05-25T16:24:59Z) - Learning Adaptive Exploration Strategies in Dynamic Environments Through
Informed Policy Regularization [100.72335252255989]
We study the problem of learning exploration-exploitation strategies that effectively adapt to dynamic environments.
We propose a novel algorithm that regularizes the training of an RNN-based policy using informed policies trained to maximize the reward in each task.
arXiv Detail & Related papers (2020-05-06T16:14:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.