EX-Graph: A Pioneering Dataset Bridging Ethereum and X
- URL: http://arxiv.org/abs/2310.01015v3
- Date: Sun, 17 Mar 2024 04:15:13 GMT
- Title: EX-Graph: A Pioneering Dataset Bridging Ethereum and X
- Authors: Qian Wang, Zhen Zhang, Zemin Liu, Shengliang Lu, Bingqiao Luo, Bingsheng He,
- Abstract summary: EX-Graph is a novel dataset that authentically links and X, marking the first and largest dataset of its kind.
Detailed statistical analysis on EX-Graph highlights the structural differences between X- and non-X-matched addresses.
- Score: 34.993300175340295
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While numerous public blockchain datasets are available, their utility is constrained by an exclusive focus on blockchain data. This constraint limits the incorporation of relevant social network data into blockchain analysis, thereby diminishing the breadth and depth of insight that can be derived. To address the above limitation, we introduce EX-Graph, a novel dataset that authentically links Ethereum and X, marking the first and largest dataset of its kind. EX-Graph combines Ethereum transaction records (2 million nodes and 30 million edges) and X following data (1 million nodes and 3 million edges), bonding 30,667 Ethereum addresses with verified X accounts sourced from OpenSea. Detailed statistical analysis on EX-Graph highlights the structural differences between X-matched and non-X-matched Ethereum addresses. Extensive experiments, including Ethereum link prediction, wash-trading Ethereum addresses detection, and X-Ethereum matching link prediction, emphasize the significant role of X data in enhancing Ethereum analysis. EX-Graph is available at \url{https://exgraph.deno.dev/}.
Related papers
- The Future of MEV [0.0]
Execution Tickets is a novel ticketing mechanism poised to redefine how the protocol distributes the value associated with proposing execution payloads.
This innovative approach enables the protocol to directly broker Maximal Extractable Value (MEV), traditionally an external revenue stream for validators.
The analysis demonstrates that the Execution Ticket system can facilitate a more equitable distribution of value within the ecosystem, and pave the way for a more secure and economically robust blockchain network.
arXiv Detail & Related papers (2024-03-05T21:11:16Z) - Analyzing Reward Dynamics and Decentralization in Ethereum 2.0: An
Advanced Data Engineering Workflow and Comprehensive Datasets for
Proof-of-Stake Incentives [5.18461573800406]
Smart contract blockchain platform, Proof-of-Stake 2.0, guarantees precise execution of applications without third-party intervention.
Our study collects consensus reward data from the Beacon chain and conducts a comprehensive analysis of reward distribution and evolution.
To evaluate the degree of decentralization in PoS, we apply several inequality indices, including the Shannon entropy, the Gini Index, the Nakamoto Coefficient, and the Herfindahl-Hirschman Index (HHI)
arXiv Detail & Related papers (2024-02-17T02:40:00Z) - arXiv4TGC: Large-Scale Datasets for Temporal Graph Clustering [52.63652741011945]
We build arXiv4TGC, a set of novel academic datasets for temporal graph clustering.
In particular, the largest dataset, arXivLarge, contains 1.3 million labeled available nodes and 10 million temporal edges.
The clustering performance on arXiv4TGC can be more apparent for evaluating different models.
arXiv Detail & Related papers (2023-06-08T06:37:04Z) - Token Spammers, Rug Pulls, and SniperBots: An Analysis of the Ecosystem of Tokens in Ethereum and in the Binance Smart Chain (BNB) [50.888293380932616]
We study the ecosystem of the tokens and liquidity pools.
We find that about 60% of tokens are active for less than one day.
We estimate that 1-day rug pulls generated $240 million in profits.
arXiv Detail & Related papers (2022-06-16T14:20:19Z) - Dimensionality reduction for prediction: Application to Bitcoin and
Ethereum [0.0]
The objective of this paper is to assess the performances of dimensionality reduction techniques to establish a link between cryptocurrencies.
We have focused our analysis on the two most traded cryptocurrencies: Bitcoin and.
We measured their performance on forecasting returns with Bitcoin s features.
arXiv Detail & Related papers (2021-12-30T12:44:50Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - Self-supervised Incremental Deep Graph Learning for Ethereum Phishing
Scam Detection [15.350215512903361]
Graph neural network (GNN) has shown promising performance in various node classification tasks.
For transaction data, which could be naturally abstracted to a real-world complex graph, the scarcity of labels and the huge volume of transaction data make it difficult to take advantage of GNN methods.
We propose a Self-supervised Incremental Graph learning model (SIEGE) for the phishing scam detection problem.
arXiv Detail & Related papers (2021-06-18T15:06:26Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - Efficient Graph Deep Learning in TensorFlow with tf_geometric [53.237754811019464]
We introduce tf_geometric, an efficient and friendly library for graph deep learning.
tf_geometric provides kernel libraries for building Graph Neural Networks (GNNs) as well as implementations of popular GNNs.
The kernel libraries consist of infrastructures for building efficient GNNs, including graph data structures, graph map-reduce framework, graph mini-batch strategy, etc.
arXiv Detail & Related papers (2021-01-27T17:16:36Z) - Blockchain is Watching You: Profiling and Deanonymizing Ethereum Users [0.0]
We propose and implement user profiling techniques based on quasi-identifiers.
We describe a malicious value-fingerprinting attack, a variant of the Danaan-gift attack, applicable for the confidential transaction overlays.
arXiv Detail & Related papers (2020-05-28T14:33:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.