Self-distilled Masked Attention guided masked image modeling with noise Regularized Teacher (SMART) for medical image analysis
- URL: http://arxiv.org/abs/2310.01209v2
- Date: Wed, 3 Jul 2024 11:49:33 GMT
- Title: Self-distilled Masked Attention guided masked image modeling with noise Regularized Teacher (SMART) for medical image analysis
- Authors: Jue Jiang, Aneesh Rangnekar, Chloe Min Seo Choi, Harini Veeraraghavan,
- Abstract summary: Pretraining vision transformers (ViT) with attention guided masked image modeling (MIM) has shown to increase downstream accuracy for natural image analysis.
We developed a co-distilled Swin transformer that combines a noisy momentum updated teacher to guide selective masking for MIM.
- Score: 6.712251433139412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretraining vision transformers (ViT) with attention guided masked image modeling (MIM) has shown to increase downstream accuracy for natural image analysis. Hierarchical shifted window (Swin) transformer, often used in medical image analysis cannot use attention guided masking as it lacks an explicit [CLS] token, needed for computing attention maps for selective masking. We thus enhanced Swin with semantic class attention. We developed a co-distilled Swin transformer that combines a noisy momentum updated teacher to guide selective masking for MIM. Our approach called \textsc{s}e\textsc{m}antic \textsc{a}ttention guided co-distillation with noisy teacher \textsc{r}egularized Swin \textsc{T}rans\textsc{F}ormer (SMARTFormer) was applied for analyzing 3D computed tomography datasets with lung nodules and malignant lung cancers (LC). We also analyzed the impact of semantic attention and noisy teacher on pretraining and downstream accuracy. SMARTFormer classified lesions (malignant from benign) with a high accuracy of 0.895 of 1000 nodules, predicted LC treatment response with accuracy of 0.74, and achieved high accuracies even in limited data regimes. Pretraining with semantic attention and noisy teacher improved ability to distinguish semantically meaningful structures such as organs in a unsupervised clustering task and localize abnormal structures like tumors. Code, models will be made available through GitHub upon paper acceptance.
Related papers
- Enhanced Self-supervised Learning for Multi-modality MRI Segmentation and Classification: A Novel Approach Avoiding Model Collapse [6.3467517115551875]
Multi-modality magnetic resonance imaging (MRI) can provide complementary information for computer-aided diagnosis.
Traditional deep learning algorithms are suitable for identifying specific anatomical structures segmenting lesions and classifying diseases with magnetic resonance images.
Self-supervised learning (SSL) can effectively learn feature representations from unlabeled data by pre-training and is demonstrated to be effective in natural image analysis.
Most SSL methods ignore the similarity of multi-modality MRI, leading to model collapse.
We establish and validate a multi-modality MRI masked autoencoder consisting of hybrid mask pattern (HMP) and pyramid barlow twin (PBT
arXiv Detail & Related papers (2024-07-15T01:11:30Z) - COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
This research is development of a novel counterfactual inpainting approach (COIN)
COIN flips the predicted classification label from abnormal to normal by using a generative model.
The effectiveness of the method is demonstrated by segmenting synthetic targets and actual kidney tumors from CT images acquired from Tartu University Hospital in Estonia.
arXiv Detail & Related papers (2024-04-19T12:09:49Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Advancing Radiograph Representation Learning with Masked Record Modeling [52.04899592688968]
We formulate the self- and report-completion as two complementary objectives and present a unified framework based on masked record modeling (MRM)
MRM reconstructs masked image patches and masked report tokens following a multi-task scheme to learn knowledge-enhanced semantic representations.
Specifically, we find that MRM offers superior performance in label-efficient fine-tuning.
arXiv Detail & Related papers (2023-01-30T18:33:32Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Self-supervised 3D anatomy segmentation using self-distilled masked
image transformer (SMIT) [2.7298989068857487]
Self-supervised learning has demonstrated success in medical image segmentation using convolutional networks.
We show our approach is more accurate and requires fewer fine tuning datasets than other pretext tasks.
arXiv Detail & Related papers (2022-05-20T17:55:14Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Self Pre-training with Masked Autoencoders for Medical Image
Classification and Segmentation [37.25161294917211]
Masked Autoencoder (MAE) has been shown to be effective in pre-training Vision Transformers (ViT) for natural image analysis.
We investigate a self pre-training paradigm with MAE for medical image analysis tasks.
arXiv Detail & Related papers (2022-03-10T16:22:38Z) - Categorical Relation-Preserving Contrastive Knowledge Distillation for
Medical Image Classification [75.27973258196934]
We propose a novel Categorical Relation-preserving Contrastive Knowledge Distillation (CRCKD) algorithm, which takes the commonly used mean-teacher model as the supervisor.
With this regularization, the feature distribution of the student model shows higher intra-class similarity and inter-class variance.
With the contribution of the CCD and CRP, our CRCKD algorithm can distill the relational knowledge more comprehensively.
arXiv Detail & Related papers (2021-07-07T13:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.