Towards Robust Cardiac Segmentation using Graph Convolutional Networks
- URL: http://arxiv.org/abs/2310.01210v5
- Date: Tue, 2 Jul 2024 09:31:04 GMT
- Title: Towards Robust Cardiac Segmentation using Graph Convolutional Networks
- Authors: Gilles Van De Vyver, Sarina Thomas, Guy Ben-Yosef, Sindre Hellum Olaisen, Håvard Dalen, Lasse Løvstakken, Erik Smistad,
- Abstract summary: We propose a graph architecture that uses two convolutional rings based on cardiac anatomy and show that this eliminates anatomical incorrect multi-structure segmentations.
We show this predictor can detect out-of-distribution and unsuitable input images in real-time.
- Score: 0.9507020058422264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully automatic cardiac segmentation can be a fast and reproducible method to extract clinical measurements from an echocardiography examination. The U-Net architecture is the current state-of-the-art deep learning architecture for medical segmentation and can segment cardiac structures in real-time with average errors comparable to inter-observer variability. However, this architecture still generates large outliers that are often anatomically incorrect. This work uses the concept of graph convolutional neural networks that predict the contour points of the structures of interest instead of labeling each pixel. We propose a graph architecture that uses two convolutional rings based on cardiac anatomy and show that this eliminates anatomical incorrect multi-structure segmentations on the publicly available CAMUS dataset. Additionally, this work contributes with an ablation study on the graph convolutional architecture and an evaluation of clinical measurements on the clinical HUNT4 dataset. Finally, we propose to use the inter-model agreement of the U-Net and the graph network as a predictor of both the input and segmentation quality. We show this predictor can detect out-of-distribution and unsuitable input images in real-time. Source code is available online: https://github.com/gillesvntnu/GCN_multistructure
Related papers
- TractGraphCNN: anatomically informed graph CNN for classification using
diffusion MRI tractography [21.929440352687458]
We propose TractGraphCNN, a novel, anatomically informed graph CNN framework for machine learning tasks.
Results in a sex prediction testbed task demonstrate strong performance of TractGraphCNN in two large datasets.
This work shows the potential of incorporating anatomical information, especially known anatomical similarities between input features, to guide convolutions in neural networks.
arXiv Detail & Related papers (2023-01-05T05:00:03Z) - Automated Coronary Arteries Labeling Via Geometric Deep Learning [13.515293812745343]
We propose an intuitive graph representation method, well suited to use with 3D coordinate data obtained from angiography scans.
We subsequently seek to analyze subject-specific graphs using geometric deep learning.
The proposed models leverage expert annotated labels from 141 patients to learn representations of each coronary segment, while capturing the effects of anatomical variability within the training data.
arXiv Detail & Related papers (2022-12-01T09:31:08Z) - Light-weight spatio-temporal graphs for segmentation and ejection
fraction prediction in cardiac ultrasound [5.597394612661975]
We propose an automated method called EchoGraphs for predicting ejection fraction and segmenting the left ventricle.
Models for direct coordinate regression based on Graph Conal Networks (GCNs) are used to detect the keypoints.
Compared to semantic segmentation, GCNs show accurate segmentation and improvements in robustness and inference runtime.
arXiv Detail & Related papers (2022-07-06T10:03:44Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Improving anatomical plausibility in medical image segmentation via
hybrid graph neural networks: applications to chest x-ray analysis [3.3382651833270587]
We introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures.
A novel image-to-graph skip connection layer allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy.
arXiv Detail & Related papers (2022-03-21T13:37:23Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.