論文の概要: Cooperative Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2310.01267v2
- Date: Sun, 9 Jun 2024 01:42:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 05:07:26.446563
- Title: Cooperative Graph Neural Networks
- Title(参考訳): 協調グラフニューラルネットワーク
- Authors: Ben Finkelshtein, Xingyue Huang, Michael Bronstein, İsmail İlkan Ceylan,
- Abstract要約: グラフニューラルネットワークのクラスは、標準的なメッセージパッシングパラダイムに従う。
本稿では,グラフニューラルネットワークをトレーニングするための新しいフレームワークを提案する。
私たちのアプローチは、より柔軟で動的なメッセージパッシングパラダイムを提供します。
- 参考スコア(独自算出の注目度): 7.2459816681395095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks are popular architectures for graph machine learning, based on iterative computation of node representations of an input graph through a series of invariant transformations. A large class of graph neural networks follow a standard message-passing paradigm: at every layer, each node state is updated based on an aggregate of messages from its neighborhood. In this work, we propose a novel framework for training graph neural networks, where every node is viewed as a player that can choose to either 'listen', 'broadcast', 'listen and broadcast', or to 'isolate'. The standard message propagation scheme can then be viewed as a special case of this framework where every node 'listens and broadcasts' to all neighbors. Our approach offers a more flexible and dynamic message-passing paradigm, where each node can determine its own strategy based on their state, effectively exploring the graph topology while learning. We provide a theoretical analysis of the new message-passing scheme which is further supported by an extensive empirical analysis on a synthetic dataset and on real-world datasets.
- Abstract(参考訳): グラフニューラルネットワークは、一連の不変変換を通じて入力グラフのノード表現の反復計算に基づいて、グラフ機械学習の一般的なアーキテクチャである。
グラフニューラルネットワークの大規模なクラスは、標準的なメッセージパッシングパラダイムに従っている。すべてのレイヤにおいて、各ノード状態はその近隣からのメッセージの集約に基づいて更新される。
本研究では,グラフニューラルネットワークをトレーニングするための新しいフレームワークを提案する。このフレームワークでは,各ノードを,'listen','broadcast','listen and broadcast',または'isolate'のいずれかを選択するプレーヤとみなす。
標準的なメッセージ伝搬スキームは、すべてのノードが隣人全員に"リストとブロードキャスト"を行う、このフレームワークの特別なケースと見なすことができる。
このアプローチは、各ノードが自身の状態に基づいて独自の戦略を決定でき、学習中にグラフトポロジを効果的に探索する、よりフレキシブルでダイナミックなメッセージパッシングパラダイムを提供します。
本稿では、合成データセットと実世界のデータセットに関する広範な経験的分析によってさらに支持される新しいメッセージパッシング方式の理論解析について述べる。
関連論文リスト
- Message Detouring: A Simple Yet Effective Cycle Representation for
Expressive Graph Learning [4.085624738017079]
グラフ全体のサイクル表現を階層的に特徴付けるために,テキストデツーリングの概念を導入する。
メッセージのデツーリングは、さまざまなベンチマークデータセットにおいて、現在の競合するアプローチを大幅に上回る可能性がある。
論文 参考訳(メタデータ) (2024-02-12T22:06:37Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Shortest Path Networks for Graph Property Prediction [13.986963122264632]
ほとんどのグラフニューラルネットワークモデルは、グラフのノード表現を直接近傍の各ノードに反復的に伝播するという、特定のメッセージパッシングパラダイムに依存している。
本稿では,最短経路近傍の各ノードにグラフのノード表現を伝搬する最短経路メッセージパッシングニューラルネットワークを提案する。
我々のフレームワークは、メッセージパッシングニューラルネットワークを一般化し、より表現力のあるモデルをもたらす。
論文 参考訳(メタデータ) (2022-06-02T12:04:29Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Node-wise Localization of Graph Neural Networks [52.04194209002702]
グラフニューラルネットワーク(GNN)は、グラフ上の表現学習モデルの強力なファミリーとして出現する。
グラフのグローバルな側面とローカルな側面の両方を考慮し,GNNのノードワイドなローカライゼーションを提案する。
我々は,4つのベンチマークグラフに対して広範な実験を行い,最先端のGNNを超える有望な性能を継続的に獲得する。
論文 参考訳(メタデータ) (2021-10-27T10:02:03Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - Natural Graph Networks [80.77570956520482]
より一般的な自然性の概念がグラフネットワークを適切に定義するのに十分であることを示す。
グローバルおよびローカルな自然グラフネットワークを定義し、後者は従来のメッセージパッシンググラフニューラルネットワークと同じくらいスケーラブルである。
論文 参考訳(メタデータ) (2020-07-16T14:19:06Z) - Convolutional Kernel Networks for Graph-Structured Data [37.13712126432493]
我々は,多層グラフカーネルのファミリーを導入し,グラフ畳み込みニューラルネットワークとカーネルメソッドの新たなリンクを確立する。
提案手法は,グラフをカーネル特徴写像の列として表現することにより,畳み込みカーネルネットワークをグラフ構造データに一般化する。
我々のモデルは、大規模データに対してエンドツーエンドでトレーニングすることもでき、新しいタイプのグラフ畳み込みニューラルネットワークをもたらす。
論文 参考訳(メタデータ) (2020-03-11T09:44:03Z) - Self-Supervised Graph Representation Learning via Global Context
Prediction [31.07584920486755]
本稿では,データ自体による自然監督を利用して,グラフ表現学習のための新たな自己教師型戦略を提案する。
グラフ内のノードのペアをランダムに選択し、よく設計されたニューラルネットをトレーニングし、一方のノードのコンテキスト位置を他方と相対的に予測する。
我々の仮説は、そのようなグラフ内コンテキストから得られた表現はグラフのグローバルなトポロジーを捉え、ノード間の類似性と区別を微妙に特徴づける、というものである。
論文 参考訳(メタデータ) (2020-03-03T15:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。