3DHR-Co: A Collaborative Test-time Refinement Framework for In-the-Wild
3D Human-Body Reconstruction Task
- URL: http://arxiv.org/abs/2310.01291v1
- Date: Mon, 2 Oct 2023 15:46:25 GMT
- Title: 3DHR-Co: A Collaborative Test-time Refinement Framework for In-the-Wild
3D Human-Body Reconstruction Task
- Authors: Jonathan Samuel Lumentut and Kyoung Mu Lee
- Abstract summary: We propose a strategy that complements 3DHR test-time refinement work under a collaborative approach.
We show that our approach can significantly enhance the scores of common classic 3DHR backbones up to -34 mm pose error suppression.
- Score: 63.85458454137262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of 3D human-body reconstruction (abbreviated as 3DHR) that utilizes
parametric pose and shape representations has witnessed significant
advancements in recent years. However, the application of 3DHR techniques to
handle real-world, diverse scenes, known as in-the-wild data, still faces
limitations. The primary challenge arises as curating accurate 3D human pose
ground truth (GT) for in-the-wild scenes is still difficult to obtain due to
various factors. Recent test-time refinement approaches on 3DHR leverage
initial 2D off-the-shelf human keypoints information to support the lack of 3D
supervision on in-the-wild data. However, we observed that additional 2D
supervision alone could cause the overfitting issue on common 3DHR backbones,
making the 3DHR test-time refinement task seem intractable. We answer this
challenge by proposing a strategy that complements 3DHR test-time refinement
work under a collaborative approach. Specifically, we initially apply a
pre-adaptation approach that works by collaborating various 3DHR models in a
single framework to directly improve their initial outputs. This approach is
then further combined with the test-time adaptation work under specific
settings that minimize the overfitting issue to further boost the 3DHR
performance. The whole framework is termed as 3DHR-Co, and on the experiment
sides, we showed that the proposed work can significantly enhance the scores of
common classic 3DHR backbones up to -34 mm pose error suppression, putting them
among the top list on the in-the-wild benchmark data. Such achievement shows
that our approach helps unveil the true potential of the common classic 3DHR
backbones. Based on these findings, we further investigate various settings on
the proposed framework to better elaborate the capability of our collaborative
approach in the 3DHR task.
Related papers
- E3D-Bench: A Benchmark for End-to-End 3D Geometric Foundation Models [78.1674905950243]
We present the first comprehensive benchmark for 3D geometric foundation models (GFMs)<n>GFMs directly predict dense 3D representations in a single feed-forward pass, eliminating the need for slow or unavailable precomputed camera parameters.<n>We evaluate 16 state-of-the-art GFMs, revealing their strengths and limitations across tasks and domains.<n>All code, evaluation scripts, and processed data will be publicly released to accelerate research in 3D spatial intelligence.
arXiv Detail & Related papers (2025-06-02T17:53:09Z) - Markerless Multi-view 3D Human Pose Estimation: a survey [0.49157446832511503]
3D human pose estimation aims to reconstruct the human skeleton of all the individuals in a scene by detecting several body joints.
No method is yet capable of solving all the challenges associated with the reconstruction of the 3D pose.
Further research is still required to develop an approach capable of quickly inferring a highly accurate 3D pose with bearable computation cost.
arXiv Detail & Related papers (2024-07-04T10:44:35Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - Decanus to Legatus: Synthetic training for 2D-3D human pose lifting [26.108023246654646]
We propose an algorithm to generate infinite 3D synthetic human poses (Legatus) from a 3D pose distribution based on 10 initial handcrafted 3D poses (Decanus)
Our results show that we can achieve 3D pose estimation performance comparable to methods using real data from specialized datasets but in a zero-shot setup, showing the potential of our framework.
arXiv Detail & Related papers (2022-10-05T13:10:19Z) - Recovering 3D Human Mesh from Monocular Images: A Survey [49.00136388529404]
Estimating human pose and shape from monocular images is a long-standing problem in computer vision.
This survey focuses on the task of monocular 3D human mesh recovery.
arXiv Detail & Related papers (2022-03-03T18:56:08Z) - Higher-Order Implicit Fairing Networks for 3D Human Pose Estimation [1.1501261942096426]
We introduce a higher-order graph convolutional framework with initial residual connections for 2D-to-3D pose estimation.
Our model is able to capture the long-range dependencies between body joints.
Experiments and ablations studies conducted on two standard benchmarks demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-11-01T13:48:55Z) - Adapted Human Pose: Monocular 3D Human Pose Estimation with Zero Real 3D
Pose Data [14.719976311208502]
Training vs. test data domain gaps often negatively affect model performance.
We present our adapted human pose (AHuP) approach that addresses adaptation problems in both appearance and pose spaces.
AHuP is built around a practical assumption that in real applications, data from target domain could be inaccessible or only limited information can be acquired.
arXiv Detail & Related papers (2021-05-23T01:20:40Z) - HMOR: Hierarchical Multi-Person Ordinal Relations for Monocular
Multi-Person 3D Pose Estimation [54.23770284299979]
This paper introduces a novel form of supervision - Hierarchical Multi-person Ordinal Relations (HMOR)
HMOR encodes interaction information as the ordinal relations of depths and angles hierarchically.
An integrated top-down model is designed to leverage these ordinal relations in the learning process.
The proposed method significantly outperforms state-of-the-art methods on publicly available multi-person 3D pose datasets.
arXiv Detail & Related papers (2020-08-01T07:53:27Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.